【題目】拋物線的焦點為,點為拋物線上一點,且不在直線上,則周長的最小值為____

【答案】

【解析】

求△MAF周長最小值,即求|MA|+|MF|的最小值.設點M在準線上的射影為D,根據(jù)拋物線定義知|MF||MD|,轉(zhuǎn)為求|MA|+|MD|的最小值,當DM、A三點共線時|MA|+|MD|最小,即可得到答案.

求△MAF周長的最小值,即求|MA|+|MF|的最小值,

設點M在準線上的射影為D,則

根據(jù)拋物線的定義,可知|MF||MD|

因此,|MA|+|MF|的最小值,即|MA|+|MD|的最小值

根據(jù)平面幾何知識,可得當D,M,A三點共線時|MA|+|MD|最小,

因此最小值為xA﹣(﹣1)=2+13

|AF|,

∴△MAF周長的最小值為3+,

故答案為:3+

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點,點為曲線上任意一點且滿足.

(1)求曲線的方程;

(2)設曲線軸交于、兩點,點是曲線上異于的任意一點,直線、分別交直線于點、.試問在軸上是否存在一個定點,使得?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點,當直線軸平行時直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在異于點的定點使得直線變化時,總有?若存在,求出點的坐標若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為

(1)的極坐標方程與的直角坐標方程;

(2)設點的極坐標為, 相交于兩點,的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一幾何體的平面展開圖如圖所示,其中四邊形為正方形,、分別為的中點,在此幾何體中,給出的下面結論中正確的有( )

A. 直線與直線異面 B. 直線與直線異面

C. 直線平面 D. 直線平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量.(注:總收益=總成本+利潤)

(1)將利潤表示為月產(chǎn)量的函數(shù);

(2)當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】李冶(1192-1279),真定欒城(今屬河北石家莊市)人,金元時期的數(shù)學家、詩人、晚年在封龍山隱居講學,數(shù)學著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑,正方形的邊長等,其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注: 平方步為畝,圓周率按近似計算)

A.步、B.步、C.步、D.步、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在區(qū)間內(nèi)的單調(diào)函數(shù),且對任意,都有,設的導函數(shù),,則函數(shù)的零點個數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,中心在原點的橢圓C的上焦點為,離心率等于

求橢圓C的方程;

設過且不垂直于坐標軸的動直線l交橢圓CA、B兩點,問:線段OF上是否存在一點D,使得以DA、DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

同步練習冊答案