【題目】

是函數(shù)的圖象上任意兩點,且,已知點的橫坐標為

1)求證:點的縱坐標為定值;

2)若;

3)已知=,其中,為數(shù)列的前項和,若對一切都成立,試求的取值范圍.

【答案】1)詳見解析;(2;(3)(+∞).

【解析】

試題(1)利用中點坐標公式的表示,得到,然后代入求中點的縱坐標的過程,根據(jù)對數(shù)運算法則,可以得到常數(shù);(2)利用上一問的結果,當時,,可以采用倒序相加法,求和;(3)根據(jù)上一問的結果,代入,求,然后跟形式,采用裂項相消法求和,并反解,轉化為恒成立求最值的問題.

試題解析:(1)證明:設

,

點的縱坐標為定值

2)由(1)知

,

兩式相加得:

……7

2)當,

=

=

λ·

∴λ

≥4,當且僅當時等號成立,

,

因此λ,即λ的取值范圍是(+∞

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校為鼓勵家;,與某手機通訊商合作,為教師辦理流量套餐.為了解該校教師手機流量使用情況,通過抽樣,得到位教師近年每人手機月平均使用流量(單位:)的數(shù)據(jù),其頻率分布直方圖如下:

若將每位教師的手機月平均使用流量分別視為其手機月使用流量,并將頻率為概率,回答以下問題.

(Ⅰ) 從該校教師中隨機抽取人,求這人中至多有人月使用流量不超過 的概率;

(Ⅱ) 現(xiàn)該通訊商推出三款流量套餐,詳情如下:

套餐名稱

月套餐費(單位:元)

月套餐流量(單位:)

這三款套餐都有如下附加條款:套餐費月初一次性收取,手機使用一旦超出套餐流量,系統(tǒng)就自動幫用戶充值 流量,資費元;如果又超出充值流量,系統(tǒng)就再次自動幫用戶充值 流量,資費元/次,依次類推,如果當月流量有剩余,系統(tǒng)將自動清零,無法轉入次月使用.

學校欲訂購其中一款流量套餐,為教師支付月套餐費,并承擔系統(tǒng)自動充值的流量資費的,其余部分由教師個人承擔,問學校訂購哪一款套餐最經(jīng)濟?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線頂點在原點,焦點在x軸上,且過點(4,4),焦點為F

1)求拋物線的焦點坐標和標準方程;

2P是拋物線上一動點,MPF的中點,求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,且2,,成等差數(shù)列.

(1)求數(shù)列的通項公式;

(2)若,求數(shù)列的前項和;

(3)對于(2)中的,設,求數(shù)列中的最大項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示單位:cm,四邊形ABCD是直角梯形,求圖中陰影部分繞AB旋轉一周所成幾何體的表面積和體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,動點滿足.設動點的軌跡為.

(1)求動點的軌跡方程,并說明軌跡是什么圖形;

(2)求動點與定點連線的斜率的最小值;

(3)設直線交軌跡兩點,是否存在以線段為直徑的圓經(jīng)過?若存在,求出實數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為比較甲、乙兩地某月14時的氣溫狀況,隨機選取該月中的5天,將這5天中14時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖.考慮以下結論:

①甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫;

②甲地該月14時的平均氣溫高于乙地該月14時的平均氣溫;

③甲地該月14時的平均氣溫的標準差小于乙地該月14時的氣溫的標準差;

④甲地該月14時的平均氣溫的標準差大于乙地該月14時的氣溫的標準差.

其中根據(jù)莖葉圖能得到的統(tǒng)計結論的標號為(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某單位的食堂中,食堂每天以10元/斤的價格購進米粉,然后以4.4元/碗的價格出售,每碗內(nèi)含米粉0.2斤,如果當天賣不完,剩下的米粉以2元/斤的價格賣給養(yǎng)豬場.根據(jù)以往統(tǒng)計資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.

(1)估計該天食堂利潤不少于760元的概率;

(2)在直方圖的需求量分組中,以區(qū)間中間值作為該區(qū)間的需求量,以需求量落入該區(qū)間的頻率作為需求量在該區(qū)間的概率,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次游戲有10個人參加,現(xiàn)將這10人分為5組,每組兩人。

(1)若任意兩人可分為一組,求這樣的分組方式有多少種?

(2)若這10人中有5名男生和5名女生,要求各組人員不能為同性,求這樣的分組方式有多少種?

(3)若這10人恰為5對夫妻,任意兩人均可分為一組,問分組后恰有一對夫妻在同組的概率是多少?

查看答案和解析>>

同步練習冊答案