【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:xy2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對稱的相異兩點(diǎn)P和Q.
①求證:線段PQ的中點(diǎn)坐標(biāo)為;
②求p的取值范圍.
【答案】(1);(2)①證明見解析;②.
【解析】
(1)先確定拋物線焦點(diǎn),再將點(diǎn)代入直線方程;(2)①利用拋物線點(diǎn)之間關(guān)系進(jìn)行化簡,結(jié)合中點(diǎn)坐標(biāo)公式求證;②利用直線與拋物線位置關(guān)系確定數(shù)量關(guān)系:,解出p的取值范圍.
(1)拋物線的焦點(diǎn)為
由點(diǎn)在直線上,得,即
所以拋物線C的方程為
(2)設(shè),線段PQ的中點(diǎn)
因?yàn)辄c(diǎn)P和Q關(guān)于直線對稱,所以直線垂直平分線段PQ,
于是直線PQ的斜率為,則可設(shè)其方程為
①由消去得
因?yàn)?/span>P 和Q是拋物線C上的相異兩點(diǎn),所以
從而,化簡得.
方程(*)的兩根為,從而
因?yàn)?/span>在直線上,所以
因此,線段PQ的中點(diǎn)坐標(biāo)為
②因?yàn)?/span>在直線上
所以,即
由①知,于是,所以
因此的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為偶函數(shù).
(Ⅰ)求的值;
(Ⅱ)若,求的值;
(Ⅲ)在(Ⅱ)的條件下,若函數(shù)在上只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象經(jīng)過點(diǎn),且在點(diǎn)處的切線方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高中生在被問及“家,朋友聚集的地方,個(gè)人空間”三個(gè)場所中“感到最幸福的場所在哪里?”這個(gè)問題時(shí),從洛陽的高中生中,隨機(jī)抽取了55人,從上海的高中生中隨機(jī)抽取了45人進(jìn)行答題.洛陽高中生答題情況是:選擇家的占、選擇朋友聚集的地方的占、選擇個(gè)人空間的占.上海高中生答題情況是:選擇朋友聚集的地方的占、選擇家的占、選擇個(gè)人空間的占.
(1)請根據(jù)以上調(diào)查結(jié)果將下面列聯(lián)表補(bǔ)充完整,并判斷能否有的把握認(rèn)為“戀家(在家里感到最幸福)”與城市有關(guān):
在家里最幸福 | 在其它場所最幸福 | 合計(jì) | |
洛陽高中生 | |||
上海高中生 | |||
合計(jì) |
(2) 從被調(diào)查的不“戀家”的上海學(xué)生中,用分層抽樣的方法選出4人接受進(jìn)一步調(diào)查,從被選出的4 人中隨機(jī)抽取2人到洛陽交流學(xué)習(xí),求這2人中含有在“個(gè)人空間”感到幸福的學(xué)生的概率.
附:,其中d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述中正確的個(gè)數(shù)是( )
①將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,方差不變;
②命題,,命題,,則為真命題;
③“”是“的必要而不充分條件;
④將函數(shù)的圖象向左平移個(gè)單位長度得到函數(shù)的圖象.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年上海國際青少年足球邀請賽將在6月下旬舉行.一體育機(jī)構(gòu)對某高中一年級(jí)750名男生,600名女生采用分層抽樣的方法抽取45名學(xué)生對足球進(jìn)行興趣調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下所示:
表1:男生
結(jié)果 | 有興趣 | 無所謂 | 無興趣 |
人數(shù) | 2 | 3 |
表2:女生
結(jié)果 | 有興趣 | 無所謂 | 無興趣 |
人數(shù) | 12 | 2 |
(1)求,的值;
(2)運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:請你填寫列聯(lián)表,并判斷是否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為非“有興趣”與性別有關(guān)系?
男生 | 女生 | 總計(jì) | |
有興趣 | |||
非有興趣 | |||
總計(jì) |
(3)從45人所有無興趣的學(xué)生中隨機(jī)選取2人,求所選2人中至少有一個(gè)女生的概率.
附:,.
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=-ln(x+m).
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上存在最大值0,求函數(shù)在上的最大值;
(3)求證:當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種海洋生物身體的長度(單位:米)與生長年限(單位:年)滿足如下的函數(shù)關(guān)系:.(設(shè)該生物出生時(shí))
(1)需經(jīng)過多少時(shí)間,該生物的身長超過8米;
(2)設(shè)出生后第年,該生物長得最快,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com