【題目】已知橢圓)的離心率為,且經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

【答案】(1) (2)見解析

【解析】

(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù),即,整理.設(shè)直線的方程為,與橢圓聯(lián)立,將韋達(dá)定理代入整理即可.

(1)由題意可得,,又,

解得.

所以,橢圓的方程為

(2)存在定點(diǎn),滿足直線與直線恰關(guān)于軸對稱.

設(shè)直線的方程為,與橢圓聯(lián)立,整理得,.

設(shè),定點(diǎn).(依題意

則由韋達(dá)定理可得,,.

直線與直線恰關(guān)于軸對稱,等價于的斜率互為相反數(shù).

所以,,即得.

,

所以,,整理得,.

從而可得,,

所以,當(dāng),即時,直線與直線恰關(guān)于軸對稱成立. 特別地,當(dāng)直線軸時,也符合題意. 綜上所述,存在軸上的定點(diǎn),滿足直線與直線恰關(guān)于軸對稱.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列滿足:,當(dāng)時.

其中表示,,中的最大項(xiàng),有以下結(jié)論:

若數(shù)列是常數(shù)列,則

若數(shù)列是公差的等差數(shù)列,則

若數(shù)列是公比為q的等比數(shù)列,則

則其中正確的結(jié)論是______寫出所有正確結(jié)論的序號

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在新型冠狀病毒疫情期間,商業(yè)活動受到很大影響某小型零售連鎖店總部統(tǒng)計(jì)了本地區(qū)50家加盟店2月份的零售情況,統(tǒng)計(jì)數(shù)據(jù)如圖所示.據(jù)估計(jì),平均銷售收入比去年同期下降40%,則去年2月份這50家加盟店的平均銷售收入約為(

A.6.6萬元B.3.96萬元C.9.9萬元D.7.92萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014年7月18日15時,超強(qiáng)臺風(fēng)“威馬遜”登陸海南。畵(jù)統(tǒng)計(jì),本次臺風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:

經(jīng)濟(jì)損失

4000元以下

經(jīng)濟(jì)損失

4000元以上

合計(jì)

捐款超過500元

30

捐款低于500元

6

合計(jì)

(1)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

(2)臺風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.

附:臨界值表

參考公式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),則對于函數(shù)有下列四個命題:

命題1:存在實(shí)數(shù)使得函數(shù)沒有零點(diǎn)

命題2:存在實(shí)數(shù)使得函數(shù)個零點(diǎn)

命題3:存在實(shí)數(shù)使得函數(shù)個零點(diǎn)

命題4:存在實(shí)數(shù)使得函數(shù)個零點(diǎn)

其中,正確的命題的個數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在銳角中,角,所對的邊分別為,,且

(1)求角大小;

(2)當(dāng)時,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機(jī)摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球?yàn)榘浊虻母怕适嵌嗌伲?

2)摸出的3個球?yàn)?/span>2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計(jì))能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,長方體ABCDA1B1C1D1的底面ABCD是正方形,點(diǎn)E在棱AA1上,BEEC1.

1)證明:BE⊥平面EB1C1;

2)若AE=A1E,求二面角BECC1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上的任意一點(diǎn)到兩定點(diǎn)、距離之和為,直線交曲線兩點(diǎn),為坐標(biāo)原點(diǎn).

1)求曲線的方程;

2)若不過點(diǎn)且不平行于坐標(biāo)軸,記線段的中點(diǎn)為,求證:直線的斜率與的斜率的乘積為定值;

3)若直線過點(diǎn),求面積的最大值,以及取最大值時直線的方程.

查看答案和解析>>

同步練習(xí)冊答案