已知函數(shù)上的增函數(shù),
(1)若,且,求證
(2)判斷(1)中命題的逆命題是否成立,并證明你的結(jié)論。

(1)詳見解析; (2)詳見解析

解析試題分析:(1)函數(shù)單調(diào)遞增,且;又,,即可得到答案; (2)假設(shè) 所以矛盾.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ac/1/gk9vh2.png" style="vertical-align:middle;" />,   2分
,  4分
所以  6分
(2)(1)中命題的逆命題是:“已知函數(shù)上的增函數(shù),
,則”為真命題.用反證法證明如下:  7分
假設(shè)  10分
這與已知矛盾  11分
所以逆命題為真命題。  12分
考點(diǎn):1,函數(shù)單調(diào)性2,函數(shù)奇偶性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)。
(1)求的單調(diào)區(qū)間;
(2)若在區(qū)間上的最小值為e,求k的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù).
(1)若在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)若,若函數(shù)在 [1,3]上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某小區(qū)想利用一矩形空地建市民健身廣場(chǎng),設(shè)計(jì)時(shí)決定保留空地邊上的一水塘(如圖中陰影部分),水塘可近似看作一個(gè)等腰直角三角形,其中,,且中,,經(jīng)測(cè)量得到.為保證安全同時(shí)考慮美觀,健身廣場(chǎng)周圍準(zhǔn)備加設(shè)一個(gè)保護(hù)欄.設(shè)計(jì)時(shí)經(jīng)過點(diǎn)作一直線交,從而得到五邊形的市民健身廣場(chǎng),設(shè)
(1)將五邊形的面積表示為的函數(shù);
(2)當(dāng)為何值時(shí),市民健身廣場(chǎng)的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知上的奇函數(shù),且當(dāng)時(shí),.
(1)求的表達(dá)式;
(2)畫出的圖象,并指出的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=4x+m·2x+1有且僅有一個(gè)零點(diǎn),求m的取值范圍,并求出該零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2f/f/l7nax2.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù),
(1)求的值;
( 2) 判斷并證明函數(shù)的單調(diào)性;
(3)若對(duì)任意的,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中.
(1)若,求函數(shù)的定義域和極值;
(2)當(dāng)時(shí),試確定函數(shù)的零點(diǎn)個(gè)數(shù),并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知函數(shù),且)若實(shí)數(shù)使得函數(shù)在定義域上有零點(diǎn),則的最小值為__________.    

查看答案和解析>>

同步練習(xí)冊(cè)答案