在平面直角坐標(biāo)系xOy中,點P(x,y)是橢圓數(shù)學(xué)公式上的一個動點,求S=x+y的最大值.

解:因橢圓的參數(shù)方程為(?為參數(shù))
故可設(shè)動點P的坐標(biāo)為,其中0≤?<2π.
因此
所以,當(dāng)時,S取最大值2.
分析:先根據(jù)橢圓的標(biāo)準(zhǔn)方程進行三角代換表示橢圓上任意一點,然后利用三角函數(shù)的輔助角公式進行化簡,即可求出所求.
點評:本題主要考查了橢圓的簡單性質(zhì)及參數(shù)方程的問題.考查了學(xué)生綜合分析問題和解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,點P到點F(3,0)的距離的4倍與它到直線x=2的距離的3倍之和記為d,當(dāng)P點運動時,d恒等于點P的橫坐標(biāo)與18之和
(Ⅰ)求點P的軌跡C;
(Ⅱ)設(shè)過點F的直線I與軌跡C相交于M,N兩點,求線段MN長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,點P(
1
2
,cos2θ)在角α的終邊上,點Q(sin2θ,-1)在角β的終邊上,且
OP
OQ
=-
1
2

(1)求cos2θ;
(2)求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,點P的直角坐標(biāo)為(1,-
3
)
、若以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,則點P的極坐標(biāo)可以是( 。
A、(1,-
π
3
)
B、(2,
3
)
C、(2,-
π
3
)
D、(2,-
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•太原模擬)在平面直角坐標(biāo)系xOy中,點P(x,y)是橢圓
x23
+y2=1上的一個動點,則S=x+y的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,點_P到定點F(-1,0)的距離的兩倍和它到定直線x=-4的距離相等.
(Ⅰ)求點P的軌跡C的方程,并說明軌跡C是什么圖形;
(Ⅱ)已知點Q(l,1),直線l:y=x+m(m∈R)和軌跡C相交于A、B兩點,是否存在實數(shù)m,使△ABQ的面積S最大?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案