函數(shù)y=2x3-3x2-12x+5在[0,3]上的最大值是
5
5
分析:對(duì)函數(shù)y=2x3-3x2-12x+5求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)在區(qū)間[0,3]上的單調(diào)性,根據(jù)函數(shù)的變化規(guī)律,確定函數(shù)在區(qū)間[0,3]上最大值的位置,求值即可.
解答:解:由題意y′=6x2-6x-12
令y′>0,解得x>2或x<-1
故函數(shù)y=2x3-3x2-12x+5在(0,2)單調(diào)遞減,在(2,3)上單調(diào)遞增,
因?yàn)閒(0)=-12,f(2)=-15,f(3)=5
故函數(shù)y=2x3-3x2-12x+5在區(qū)間[0,3]上最大值是5,
故答案為:5.
點(diǎn)評(píng):本題考查用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,利用單調(diào)性求函數(shù)的最值,利用單調(diào)性研究函數(shù)的最值,是導(dǎo)數(shù)的重要運(yùn)用,注意上類題的解題規(guī)律與解題步驟.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知曲線C1:y=x3(x≥0)與曲線C2:y=-2x3+3x(x≥0)交于O,A,直線x=t(0<t<1)與曲線C1,C2分別交于B,D.
(Ⅰ)寫出四邊形ABOD的面積S與t的函數(shù)關(guān)系式S=f(t);
(Ⅱ)討論f(t)的單調(diào)性,并求f(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

求函數(shù)y=2x3-3x+4的導(dǎo)數(shù).?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如下圖,已知曲線C1:y=x3(x≥0)與曲線C2:y=-2x3+3x(x≥0)交于點(diǎn)O、A,直線x=t(0<t<1)與曲線C1、C2分別相交于點(diǎn)B、D.

(1)寫出四邊形ABOD的面積S與t的函數(shù)關(guān)系S=f(t);

(2)討論f(t)的單調(diào)性,并求f(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=2x3-3x+4的導(dǎo)數(shù).?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=2x3-3x+4的導(dǎo)數(shù).?

查看答案和解析>>

同步練習(xí)冊(cè)答案