【題目】(本小題滿分12分)已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且

)求拋物線的方程;

)已知點(diǎn),延長(zhǎng)交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.

【答案】;()詳見(jiàn)解析.

【解析】解法一:()由拋物線的定義得

因?yàn)?/span>,即,解得,所以拋物線的方程為

)因?yàn)辄c(diǎn)在拋物線 上,

所以,由拋物線的對(duì)稱性,不妨設(shè)

可得直線的方程為

,得

解得,從而

,

所以,,

所以,從而,這表明點(diǎn)到直線的距離相等,

故以為圓心且與直線相切的圓必與直線相切.

解法二:()同解法一.

)設(shè)以點(diǎn)為圓心且與直線相切的圓的半徑為

因?yàn)辄c(diǎn)在拋物線 上,

所以,由拋物線的對(duì)稱性,不妨設(shè)

,可得直線的方程為

,得,

解得,從而

,故直線的方程為,

從而

又直線的方程為,

所以點(diǎn)到直線的距離

這表明以點(diǎn)為圓心且與直線相切的圓必與直線相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在斜三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.

(1)求證:AB1⊥CC1
(2)若 ,求二面角C﹣AB1﹣A1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)若ax>lnx恒成立,求實(shí)數(shù)a的取值范圍;
(2)證明:a>0,x0∈R,使得當(dāng)x>x0時(shí),ax>lnx恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖放置的邊長(zhǎng)為2的正三角形沿軸滾動(dòng), 設(shè)頂點(diǎn)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式是, 有下列結(jié)論:

①函數(shù)的值域是;②對(duì)任意的,都有;

③函數(shù)是偶函數(shù);④函數(shù)單調(diào)遞增區(qū)間為.

其中正確結(jié)論的序號(hào)是________. (寫出所有正確結(jié)論的序號(hào))

說(shuō)明:

“正三角形沿軸滾動(dòng)”包括沿軸正方向和沿軸負(fù)方向滾動(dòng). 沿軸正方向滾動(dòng)指的是先以頂點(diǎn)為中心順時(shí)針旋轉(zhuǎn), 當(dāng)頂點(diǎn)落在軸上時(shí), 再以頂點(diǎn)為中心順時(shí)針旋轉(zhuǎn), 如此繼續(xù). 類似地, 正三角形可以沿軸負(fù)方向滾動(dòng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.

(1)解不等式f(x)<g(x);

(2)若2f(x)+g(x)>ax對(duì)任意的實(shí)數(shù)x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

Ⅰ)若函數(shù)處的切線方程為,求的值;

Ⅱ)當(dāng)時(shí),若不等式恒成立,求的取值范圍;

Ⅲ)當(dāng)時(shí),若方程上總有兩個(gè)不等的實(shí)根, 的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)都是正整數(shù)的三角形中,周長(zhǎng)是2009的三角形與周長(zhǎng)是2012的三角形哪一種的個(gè)數(shù)多?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè) 為實(shí)數(shù),且,

(I)求方程的解;

(II)若滿足,求證:①

(III)在(2)的條件下,求證:由關(guān)系式所得到的關(guān)于的方程存在,使

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某創(chuàng)業(yè)團(tuán)隊(duì)擬生產(chǎn)兩種產(chǎn)品,根據(jù)市場(chǎng)預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資額成正比(如圖1),產(chǎn)品的利潤(rùn)與投資額的算術(shù)平方根成正比(如圖2).(注: 利潤(rùn)與投資額的單位均為萬(wàn)元)

(注:利潤(rùn)與投資額的單位均為萬(wàn)元)

(1)分別將兩種產(chǎn)品的利潤(rùn)、表示為投資額的函數(shù);

(2)該團(tuán)隊(duì)已籌集到10 萬(wàn)元資金,并打算全部投入兩種產(chǎn)品的生產(chǎn),問(wèn):當(dāng)產(chǎn)品的投資額為多少萬(wàn)元時(shí),生產(chǎn)兩種產(chǎn)品能獲得最大利潤(rùn),最大利潤(rùn)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案