【題目】已知點(diǎn)、是雙曲線:的左右焦點(diǎn),其漸近線為,且右頂點(diǎn)到左焦點(diǎn)的距離為3.
(1)求雙曲線的方程;
(2)過(guò)的直線與相交于、兩點(diǎn),直線的法向量為,且,求的值;
(3)在(2)的條件下,若雙曲線在第四象限的部分存在一點(diǎn)滿足,求的值及的面積.
【答案】(1)(2)(3),
【解析】
(1)由漸近線為,可知,由右頂點(diǎn)到左焦點(diǎn)的距離為3,可知,再根據(jù),求解,,即可.
(2)由題意可知,直線的方程為,將直線的方程與雙曲線的方程聯(lián)立,得,根據(jù)韋達(dá)定理,確定,,再由,得,求解的值,即可.
(3)有(2)可知,從而確定,設(shè),由得,代入雙曲線的方程,解得值以及點(diǎn)坐標(biāo),利用點(diǎn)到直線距離公式,求解點(diǎn)到直線的距離.再求解的面積即可.
解:(1)由題意得解得,,
所以雙曲線的方程為:.
(2)直線的方程為,由,得(*)
所以
由得
即
代入化簡(jiǎn),并解得(舍去負(fù)值)
(3)把代入(*)并化簡(jiǎn)得,
此時(shí),
所以
設(shè),由得代入雙曲線的方程解得
(舍),,所以,
點(diǎn)到直線的距離為,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn).求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究所計(jì)劃利用“神七”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排,通過(guò)調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品A(件) | 產(chǎn)品B(件) | ||
研制成本與塔載 | 20 | 30 | 計(jì)劃最大資 |
產(chǎn)品重量(千克/件) | 10 | 5 | 最大搭載 |
預(yù)計(jì)收益(萬(wàn)元/件) | 80 | 60 |
試問(wèn):如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)若不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書(shū)作序時(shí),介紹了“勾股圓方圖”,亦稱(chēng)“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的),類(lèi)比“趙爽弦圖”,可類(lèi)似地構(gòu)造如圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,設(shè),則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐P﹣ABC中,AB=1,BC=2,AC,PC,PA,PB,E是線段BC的中點(diǎn).
(1)求點(diǎn)C到平面APE的距離d;
(2)求二面角P﹣EA﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:.(為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,并使得它與直角坐標(biāo)系有相同的長(zhǎng)度單位,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與直線交于、兩點(diǎn),且點(diǎn)的坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線E:x2=2py(p>0)的焦點(diǎn)為F,點(diǎn)M是直線y=x與拋物線E在第一象限內(nèi)的交點(diǎn),且|MF|=5.
(1)求拋物E的方程.
(2)直線l與拋物線E相交于兩點(diǎn)A,B,過(guò)點(diǎn)A,B分別作AA1⊥x軸于A1,BB1⊥x軸于B1,原點(diǎn)O到直線l的距離為1.求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com