在平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知兩定點A(1,0),B(0,-1)動點P滿足:,求點P的軌跡方程。

所以點P的軌跡方程為…………12
略       
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知曲線C上任意一點M到點F(0,1)的距離比它到直線 的距離小1.
(1)求曲線C的方程;
(2)過點當(dāng)△AOB的面積為時(O為坐標(biāo)原點),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
設(shè)橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上至少取兩個點,將其坐標(biāo)記錄于下表中:
x
3
—2
4


y

0
—4

-
 
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓交于不同兩點,請問是否存在這樣的
直線過拋物線的焦點?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知兩定點滿足條件的點P的軌跡是曲線E,直線與曲線E交于A、B兩點。
(1)求的取值范圍;
(2)如果且曲線E上存在點C,使,求的值及點C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)圓,將曲線上每一點的縱坐標(biāo)壓縮到原來的,對應(yīng)的橫坐標(biāo)不變,得到曲線C.經(jīng)過點M(2,1),平行于OM的直線在y軸上的截距為m(m≠0),交曲線C于A、B兩個不同點.
(1)求曲線的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)我國計劃發(fā)射火星探測器,該探測器的運行軌道是以火星(其半徑百公里)的中心為一個焦點的橢圓. 如圖,已知探測器的近火星點(軌道上離火星表面最近的點)到火星表面的距離為百公里,遠(yuǎn)火星點(軌道上離火星表面最遠(yuǎn)的點)到火星表面的距離為800百公里. 假定探測器由近火星點第一次逆時針運行到與軌道中心的距離為百公里時進(jìn)行變軌,其中分別為橢圓的長半軸、短半軸的長,求此時探測器與火星表面的距離(精確到1百公里).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知、,橢圓C的方程為、分別為橢圓C的兩個焦點,設(shè)為橢圓C上一點,存在以為圓心的外切、與內(nèi)切
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點作斜率為的直線與橢圓C相交于AB兩點,與軸相交于點D,若
的值;
(Ⅲ)已知真命題:“如果點T()在橢圓上,那么過點T
的橢圓的切線方程為=1.”利用上述結(jié)論,解答下面問題:
已知點Q是直線上的動點,過點Q作橢圓C的兩條切線QM、QN
M、N為切點,問直線MN是否過定點?若是,請求出定點坐標(biāo);若不是,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

經(jīng)過一定圓外一定點,并且與該圓外切的動圓圓心的軌跡是             (     )
A.圓B.橢圓C.直線D.雙曲線的一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從極點作圓,則各弦中點的軌跡方程為__________.

查看答案和解析>>

同步練習(xí)冊答案