(本題滿分12分)
已知函數(shù);
(1)當(dāng)時(shí),判斷在定義域上的單調(diào)性;
(2)求在上的最小值.
(1)在上是單調(diào)遞增函數(shù).
(2) 當(dāng)時(shí) , ;
當(dāng)時(shí), ;
當(dāng)時(shí) , -
【解析】
試題分析:解:(Ⅰ)由題意:的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013052107593348537340/SYS201305210800122510428350_DA.files/image002.png">,且.
,故在上是單調(diào)遞增函數(shù). ---------------4分
(Ⅱ)由(1)可知:
① 若,則,即在上恒成立,此時(shí)在上為增函數(shù), ------------------6分
② 若,則,即在上恒成立,此時(shí)在上為減函數(shù),------------------8分
③ 若,令得,
當(dāng)時(shí),在上為減函數(shù),
當(dāng)時(shí),在上為增函數(shù),
------------------11分
綜上可知:當(dāng)時(shí) , ;
當(dāng)時(shí), ;
當(dāng)時(shí) , -----------------12分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):根據(jù)導(dǎo)數(shù)的符號(hào)判定函數(shù)的單調(diào)性是解題的關(guān)鍵,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對稱圖形,并求其對稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問4分,(Ⅱ)小問6分,(Ⅲ)小問2分.)
如圖所示,直二面角中,四邊形是邊長為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com