【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形的面積可無(wú)限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )

(參考數(shù)據(jù):

A. 12 B. 24 C. 48 D. 96

【答案】C

【解析】1次執(zhí)行循環(huán)體后,S=×6×sin60=,不滿(mǎn)足退出循環(huán)的條件,則n=12,

2次執(zhí)行循環(huán)體后,S=×12×sin30=3,不滿(mǎn)足退出循環(huán)的條件,則n=24,

3次執(zhí)行循環(huán)體后,S=×24×sin153.1056,不滿(mǎn)足退出循環(huán)的條件,則n=48,

4次執(zhí)行循環(huán)體后,S=×48×sin7.5°3.132,滿(mǎn)足退出循環(huán)的條件,

故輸出的n值為48,

本題選擇C選項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本著健康、低碳的生活理念,租自行車(chē)騎游的人越來(lái)越多.某自行車(chē)租車(chē)點(diǎn)的收費(fèi)標(biāo)準(zhǔn)是每車(chē)每次租不超過(guò)兩小時(shí)免費(fèi),超過(guò)兩小時(shí)的收費(fèi)標(biāo)準(zhǔn)為2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有人獨(dú)立來(lái)該租車(chē)點(diǎn)則車(chē)騎游.各租一車(chē)一次.設(shè)甲、乙不超過(guò)兩小時(shí)還車(chē)的概率分別為;兩小時(shí)以上且不超過(guò)三小時(shí)還車(chē)的概率分別為;兩人租車(chē)時(shí)間都不會(huì)超過(guò)四小時(shí).

)求出甲、乙所付租車(chē)費(fèi)用相同的概率;

)求甲、乙兩人所付的租車(chē)費(fèi)用之和為隨機(jī)變量,求的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下結(jié)論正確的序號(hào)有_________

(1)根據(jù)列聯(lián)表中的數(shù)據(jù)計(jì)算得出≥6.635, 而P(≥6.635)≈0.01,則有99% 的把握認(rèn)為兩個(gè)分類(lèi)變量有關(guān)系.

(2)在殘差圖中,殘差點(diǎn)比較均勻落在水平的帶狀區(qū)域中即可說(shuō)明選用的模型比較合適,與帶狀區(qū)域的寬度無(wú)關(guān).

(3)在線(xiàn)性回歸分析中,相關(guān)系數(shù)為,越接近于1,相關(guān)程度越大;越小,相關(guān)程度越小.

(4)在回歸直線(xiàn)中,變量時(shí),變量的值一定是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)P1 , P2 , …Pn為平面α內(nèi)的n個(gè)點(diǎn),在平面α內(nèi)的所有點(diǎn)中,若點(diǎn)P到點(diǎn)P1 , P2 , …Pn的距離之和最小,則稱(chēng)點(diǎn)P為P1 , P2 , …Pn的一個(gè)“中位點(diǎn)”,例如,線(xiàn)段AB上的任意點(diǎn)都是端點(diǎn)A,B的中位點(diǎn),現(xiàn)有下列命題:
①若三個(gè)點(diǎn)A、B、C共線(xiàn),C在線(xiàn)段AB上,則C是A,B,C的中位點(diǎn);
②直角三角形斜邊的中點(diǎn)是該直角三角形三個(gè)頂點(diǎn)的中位點(diǎn);
③若四個(gè)點(diǎn)A、B、C、D共線(xiàn),則它們的中位點(diǎn)存在且唯一;
④梯形對(duì)角線(xiàn)的交點(diǎn)是該梯形四個(gè)頂點(diǎn)的唯一中位點(diǎn).
其中的真命題是(寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元。該建筑物每年的能源消耗費(fèi)用C(單位:萬(wàn)元)與隔熱層厚度x(單位:cm)滿(mǎn)足關(guān)系:Cx=若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元。設(shè)fx)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。

)求k的值及f(x)的表達(dá)式。

)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“圓材埋壁”是《九章算術(shù)》中的一個(gè)問(wèn)題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,學(xué)會(huì)一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知道大小,用鋸取鋸它,鋸口深一寸,鋸道長(zhǎng)一尺,問(wèn)這塊圓柱形木材的直徑是多少?現(xiàn)有圓柱形木材一部分埋在墻壁中,截面如圖所示,已知弦尺,弓形高寸,則陰影部分面積約為(注:,1尺=10寸)( )

A. 6.33平方寸B. 6.35平方寸

C. 6.37平方寸D. 6.39平方寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義為n個(gè)正數(shù)的“均倒數(shù)”已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為

(1)求數(shù)列{an}的通項(xiàng)公式

(2)設(shè)數(shù)列的前n項(xiàng)和為,若4<對(duì)一切恒成立試求實(shí)數(shù)m的取值范圍

(3)令,問(wèn):是否存在正整數(shù)k使得對(duì)一切恒成立,如存在求出k值,否則說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)當(dāng)時(shí),解不等式:;

(Ⅱ)當(dāng)時(shí),存在最小值,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){an}是公比為q的等比數(shù)列.
(1)試推導(dǎo){an}的前n項(xiàng)和公式;
(2)設(shè)q≠1,證明數(shù)列{an+1}不是等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案