已知
a
=(-1,2),
b
=(2,1),求:
(1)2
a
+3
b

(2)
a
-3
b
;
(3)
1
2
a
-
1
3
b
考點(diǎn):平面向量的坐標(biāo)運(yùn)算
專題:平面向量及應(yīng)用
分析:直接利用向量的坐標(biāo)運(yùn)算法則求解即可.
解答: 解:已知
a
=(-1,2),
b
=(2,1),
(1)2
a
+3
b
=(-2,4)+(6,3)=(4,7);
(2)
a
-3
b
=(-1,2)-(6,3)=(-7,-1);
(3)
1
2
a
-
1
3
b
=(-
1
2
,1
)+(-
2
3
,-
1
3
)=(-
7
6
,
2
3
).
點(diǎn)評(píng):本題考查向量的坐標(biāo)運(yùn)算,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線ax+by-
2
=0(a>l,b>1)被圓x2+y2-2x-2y-2=0截得的弦長為2
3
,則ab的最小值為(  )
A、
2
-1
B、
2
+1
C、3-2
2
D、3+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=3x2+x則f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知梯形ABCD中,AB∥DC,且DC=2AB,若A(0,8),B(-4,0),C(5,-3),試求點(diǎn)D的坐標(biāo)及梯形對(duì)角線交點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=1”是“直線ax+(2-a)y+3=0與x-ay-2=0垂直”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
e2
是平面內(nèi)所有向量的一組基底,則下面四組向量中,不能作為基底的是(  )
A、
e1
e1
-
e2
B、
e1
+
e2
e1
-3
e2
C、
e1
-2
e2
與-3
e1
+6
e2
D、2
e1
+3
e2
e1
-2
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={a,b,c,d},集合A={a,b},B={b,c,d},則(∁UA)∪(∁UB)=(  )
A、{c,d}
B、{a,b,c,d}
C、{a,d}
D、{a,c,d}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,sinA+sinB=sinC(cosB+cosA),則sinA+sinB+sinAsinB的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
cos2
ωx
2
+
1
2
asinωx-
3
2
a(ω>0,a>0)在一個(gè)周期內(nèi)的圖象如圖所示,其中點(diǎn)A為圖象上的最高點(diǎn),點(diǎn)B,C為圖象與x軸的兩個(gè)相鄰交點(diǎn),且△ABC是邊長為4的正三角形.
(Ⅰ)求ω與a的值;
(Ⅱ)若f(x0)=
8
3
5
,且x0∈(-
10
3
,
2
3
),求f(x0-1)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案