15.復(fù)數(shù)z=$\frac{-3+i}{2+i}$的模是( 。
A.2B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)z,再根據(jù)復(fù)數(shù)求模公式計算得答案.

解答 解:z=$\frac{-3+i}{2+i}$=$\frac{(-3+i)(2-i)}{(2+i)(2-i)}=\frac{-5+5i}{5}=-1+i$,
則$|z|=\sqrt{(-1)^{2}+{1}^{2}}=\sqrt{2}$.
故選:B.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.不等式ax2+2ax+1>0對一切x∈R恒成立,則實數(shù)a的取值范圍為[0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)圖象的一部分如圖所示,函數(shù)g(x)=f(x+$\frac{π}{8}$),則下列結(jié)論正確的是(  )
A.函數(shù)g(x)的奇函數(shù)
B.函數(shù)f(x)與g(x)的圖象均關(guān)于直線x=-$\frac{15}{8}$π對稱
C.函數(shù)f(x)與g(x)的圖象均關(guān)于點(-$\frac{π}{4}$,0)對稱
D.函數(shù)f(x)與g(x)在區(qū)間(-$\frac{π}{3}$,0)上均單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知橢圓的中心在原點,焦點在x軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l交橢圓于A,B兩個不同點.
(1)求橢圓的方程;   
(2)求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系中,O為坐標(biāo)原點,已知向量$\overrightarrow{a}$=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t).(1)若 $\overrightarrow{AB}$⊥$\overrightarrow{a}$,且|$\overrightarrow{AB}$|=$\sqrt{5}$|$\overrightarrow{OA}$|,求向量 $\overrightarrow{OB}$;
(2)若向量 $\overrightarrow{AC}$與向量 $\overrightarrow{a}$共線,常數(shù)k>0,求f(θ)=tsinθ的值域;
(3)當(dāng)(2)問中f(θ)的最大值4時,求 $\overrightarrow{OA}$•$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右頂點為A1,A2,拋物線E以坐標(biāo)原點為頂點,以A2為焦點.若雙曲線C的一條漸近線與拋物線E及其準(zhǔn)線分別交于點M,N,且$\overrightarrow{{A_1}N}=\overrightarrow{M{A_2}}$,∠MA1N=135°,則雙曲線C的離心率為( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若tanα=2,則sin2α=( 。
A.$-\frac{2}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=(x-a)2lnx(a為常數(shù)).
(Ⅰ)若f(x)在(1,f(1))處的切線與直線2x+2y-3=0垂直.
(ⅰ)求實數(shù)a的值;
(ⅱ)若a非正,比較f(x)與x(x-1)的大。
(Ⅱ)如果0<a<1,判斷f(x)在(a,1)上是否有極值,若有極值是極大值還是極小值?若無極值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)=log2x,若f(x)的導(dǎo)數(shù)f′(x0)=1,則x0=( 。
A.2eB.e2C.log2eD.loge2

查看答案和解析>>

同步練習(xí)冊答案