如圖,已知∠A=60°,P、Q分別是∠A兩邊上的動點。
(1)當AP=1,AQ=3時,求PQ的長;
(2)AP、AQ長度之和為定值4,求線段PQ的最小值。
解:(1)由余弦定理,得,
。
(2)設AP=x,AQ=y,則
,
,
,
,
當且僅當x=y時,即AP=AQ=2時,PQ取到最小值,最小值是2。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知∠A=60°,P、Q分別是∠A兩邊上的動點.
(1)當AP=1,AQ=3時,求PQ的長;
(2)AP、AQ長度之和為定值4,求線段PQ最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知∠A=60°,P、Q分別是∠A兩邊上的動點.
(1)當AP=1,AQ=3時,求PQ的長;
(2)已知AP+AQ=4,當線段AP為何值時,線段PQ取得最小值,并求線段PQ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知∠A=60°,P、Q分別是∠A兩邊上的動點.
(1)當AP=1,AQ=3時,求PQ的長;
(2)AP、AQ長度之和為定值4,求線段PQ最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南省郴州一中高二(下)段考數(shù)學試卷(解析版) 題型:解答題

如圖,已知∠A=60°,P、Q分別是∠A兩邊上的動點.
(1)當AP=1,AQ=3時,求PQ的長;
(2)AP、AQ長度之和為定值4,求線段PQ最小值.

查看答案和解析>>

同步練習冊答案