精英家教網 > 高中數學 > 題目詳情
設函數f(x)=
x
x+2
(x>0)
,觀察:f1(x)=f(x)=
x
x+2
,f2(x)=f(f1(x))=
x
3x+4
f3(x)=f(f2(x))=
x
7x+8
,f4(x)=f(f3(x))=
x
15x+16
…根據以上事實,由歸納推理可得當n∈N*且n≥2時,fn(x)=f(fn-1(x))=(  )
分析:觀察所給的前四項的結構特點,先觀察分子,只有一項組成,并且沒有變化,在觀察分母,有兩部分組成,是一個一次函數,根據一次函數的一次項系數與常數項的變化特點,得到結果.
解答:解:觀察:f1(x)=f(x)=
x
x+2
,f2(x)=f(f1(x))=
x
3x+4
f3(x)=f(f2(x))=
x
7x+8
,f4(x)=f(f3(x))=
x
15x+16
…:
  所給的函數式的分子不變都是x,
而分母是由兩部分的和組成,
第一部分的系數分別是1,3,7,15…2n-1,
第二部分的數分別是2,4,8,16…2n
∴fn(x)=f(fn-1(x))=
x
(2n-1)x+2n

故答案為:C
點評:本題考查歸納推理,實際上本題考查的重點是給出一個數列的前幾項寫出數列的通項公式,本題是一個綜合題目,知識點結合的比較巧妙.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(Ⅰ)已知函數f(x)=
x
x+1
.數列{an}滿足:an>0,a1=1,且
an+1
=f(
an
)
,記數列{bn}的前n項和為Sn,且Sn=
2
2
[
1
an
+(
2
+1)n]
.求數列{bn}的通項公式;并判斷b4+b6是否仍為數列{bn}中的項?若是,請證明;否則,說明理由.
(Ⅱ)設{cn}為首項是c1,公差d≠0的等差數列,求證:“數列{cn}中任意不同兩項之和仍為數列{cn}中的項”的充要條件是“存在整數m≥-1,使c1=md”.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
2-xx∈(-∞,1)
x2x∈[1,+∞)
若f(x)>4,則x的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
x
x+1
(x>0)
,觀察:f1(x)=f(x)=
x
x+1
,f2(x)=f(f1(x))=
x
2x+1
f3(x)=f(f2(x))=
x
3x+1
,f4(x)=f(f3(x))=
x
4x+1
,根據以上事實,由歸納推理可得:當n∈N+且n≥2時,fn(x)=f(fn-1(x))=
x
nx+1
x
nx+1

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
x
x+2
(x>0)
,觀察:f1(x)=f(x)=
x
x+2
,f2(x)=f[f1(x)]=
x
3x+4
,f3(x)=f[f2(x)]=
x
7x+8
f4(x)=f[f3(x)]=
x
15x+16

------根據以上事實,由歸納推理可得:當n∈N+且n>1時,fn(x)=
x
(2n-1)x+2n
x
(2n-1)x+2n

查看答案和解析>>

同步練習冊答案