在平面直角坐標(biāo)系中,圓的方程為,若直線
至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值是  ▲ 
。
【考點(diǎn)】圓與圓的位置關(guān)系,點(diǎn)到直線的距離
∵圓C的方程可化為:,∴圓C的圓心為,半徑為1。
∵由題意,直線上至少存在一點(diǎn),以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn);
∴存在,使得成立,即。
即為點(diǎn)到直線的距離,∴,解得。
的最大值是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),對(duì)于任意實(shí)數(shù),都有   ,則實(shí)數(shù)的取值范圍是                           (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)時(shí)有   (    )
A.極小值B.極大值
C.既有極大值又有極小值D.極值不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù).
(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于都有成立,試求的取值范圍;
(Ⅲ)記.當(dāng)時(shí),函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則( )
A.2B.1C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知奇函數(shù)上有意義,且在上是增函數(shù),
(1)求滿足不等式的實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù),若集合,集合 ,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)  時(shí),求函數(shù)  的最小值;
(Ⅱ)當(dāng)  時(shí),討論函數(shù)  的單調(diào)性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的單調(diào)減區(qū)間為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的單調(diào)遞減區(qū)間是.   (   )
A.(–1, 2)B.(–∞, –1)與(1, +∞)
C.(–∞, –2)與(0, +∞)D.(–2,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案