10.已知拋物線方程為y2=-4x,直線l的方程為2x+y-4=0,在拋物線上有一動點A,點A到y(tǒng)軸的距離為m,點A到直線l的距離為n,則m+n的最小值為$\frac{6\sqrt{5}}{5}$-1.

分析 點A到準線的距離等于點A到焦點F的距離,從而A到y(tǒng)軸的距離等于點A到焦點F的距離減1,過焦點F作直線2x+y-4═0的垂線,此時m+n=|AF|+n-1最小,根據(jù)拋物線方程求得F,進而利用點到直線的距離公式求得m+n的最小值.

解答 解:由題意,點A到準線的距離等于點A到焦點F的距離,
從而A到y(tǒng)軸的距離等于點A到焦點F的距離減1.
過焦點F作直線2x+y-4═0的垂線,此時m+n=|AF|+n-1最小,
∵F(-1,0),則|AF|+n=$\frac{|-2+0-4|}{\sqrt{5}}$=$\frac{6\sqrt{5}}{5}$,
則m+n的最小值為$\frac{6\sqrt{5}}{5}$-1.
故答案為:$\frac{6\sqrt{5}}{5}$-1.

點評 本題主要考查了拋物線的簡單性質(zhì),點到直線距離公式的運用,正確轉(zhuǎn)化是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知F1,F(xiàn)2分別為橢圓$C:\frac{x^2}{25}+\frac{y^2}{9}=1$的左、右焦點,點A∈C,點M的坐標為(1,0),AM為∠F1AF2的平分線,則|AF2|=$\frac{25}{4}$或$\frac{15}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知點A(0,2),拋物線C:y2=2px(p>0)的焦點為F,射線FA與拋物線C相交于點M,與其準線相交于點N,$\frac{|FM|}{|MN|}$=$\frac{\sqrt{5}}{5}$
(Ⅰ)求拋物線C的方程;
(Ⅱ)過點E(-4,0)的直線l與拋物線C交于兩點P,Q,點P關(guān)于x軸的對稱點為P′,試判斷直線P′Q是否恒過一定點,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列命題中正確的是( 。
A.U(∁UA)={A}B.若A∩B=B,則A⊆B
C.若A={1,∅,{2}},則{2}?AD.若A={1,2,3},B={x|x⊆A},則A∈B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.一算法的程序框圖如圖,若輸出的y=-1,則輸入的x的值可能為( 。
A.9B.3C.0D.-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.口袋中有三個大小相同、顏色不同的小球各一個,每次從中取一個,記下顏色后放回,當三種顏色的球全部取出時停止取球,則恰好取了5次停止種數(shù)為42.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={(x,y)|x+y=0,x,y∈R},B={(x,y)|y=x2,x,y∈R},則集合A∩B的元素個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.y=$\frac{1}{lgx}$定義域是(  )
A.{x|x≠0}B.{x|x>0}C.{x|x>0且x≠1}D.{x|x>0且x≠10}
E.{x|x>0且x≠1}         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.化簡:$\frac{sin(2π-α)cos(3π+α)cos(\frac{3}{2}π+α)}{sin(-π+α)sin(3π-α)cos(-π-α)}$.

查看答案和解析>>

同步練習冊答案