求函數(shù)的單調區(qū)間,必須先求函數(shù)的定義域.

討論函數(shù)y=f[(x)]的單調性時要注意兩點:

(1)若u=(x),y=f(u)在所討論的區(qū)間上都是增函數(shù)或都是減函數(shù),則y=f[(x)]為________;

(2)若u=(x),y=f(u)在所討論的區(qū)間上一個是增函數(shù),另一個是減函數(shù),則y=f[(x)]為.________

答案:增函數(shù);減函數(shù)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-ax.
(Ⅰ)求函數(shù)f(x)的極值,
(Ⅱ)已知過點P(1,f(1)),Q(e,f(e))的直線為l,則必存在x0∈(1,e),使曲線y=f(x)在點(x0,f(x0))處的切線與直線l平行,求x0的值,
(Ⅲ)已知函數(shù)g(x)圖象在[0,1]上連續(xù)不斷,且函數(shù)g(x)的導函數(shù)g'(x)在區(qū)間(0,1)內單調遞減,若g(1)=0,試用上述結論證明:對于任意x∈(0,1),恒有g(x)>g(0)(1-x)成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
12
m(x-1)2-2x+3+lnx
,常數(shù)m≥1
(1)求函數(shù)f(x)單調遞減區(qū)間;
(2)當m=2時,設函數(shù)g(x)=f(x)-f(2-x)+3的定義域為D,?x1,x2∈D,且x1+x2=1,求證:g(x1)+g(x2),g(x1)-g(x2),g(2x1)+g(2x2),g(2x1)-g(2x2)中必有一個是常數(shù)(不含x1,x2);
(3)若曲線C:y=f(x)在點P(1,1)處的切線l與曲線C有且只有一個公共點,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年溫州市適應性測試二理) (15分)已知函數(shù)

(1)求的單調區(qū)間;

(2)對于給定的閉區(qū)間,試證明在(0,1)上必存在實數(shù),使時,

上是增函數(shù);

(3)當時,記,若對于任意的總存在

時,使得成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年江蘇省無錫市輔仁高級中學高三3月聯(lián)考數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),常數(shù)m≥1
(1)求函數(shù)f(x)單調遞減區(qū)間;
(2)當m=2時,設函數(shù)g(x)=f(x)-f(2-x)+3的定義域為D,?x1,x2∈D,且x1+x2=1,求證:g(x1)+g(x2),g(x1)-g(x2),g(2x1)+g(2x2),g(2x1)-g(2x2)中必有一個是常數(shù)(不含x1,x2);
(3)若曲線C:y=f(x)在點P(1,1)處的切線l與曲線C有且只有一個公共點,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
2
m(x-1)2-2x+3+lnx
,常數(shù)m≥1
(1)求函數(shù)f(x)單調遞減區(qū)間;
(2)當m=2時,設函數(shù)g(x)=f(x)-f(2-x)+3的定義域為D,?x1,x2∈D,且x1+x2=1,求證:g(x1)+g(x2),g(x1)-g(x2),g(2x1)+g(2x2),g(2x1)-g(2x2)中必有一個是常數(shù)(不含x1,x2);
(3)若曲線C:y=f(x)在點P(1,1)處的切線l與曲線C有且只有一個公共點,求m的值.

查看答案和解析>>

同步練習冊答案