10名學(xué)生站成一排,要給每名學(xué)生發(fā)一頂紅色、黃色、藍(lán)色的帽子,要求每種顏色的帽子都要有,且相鄰的兩名學(xué)生帽子的顏色不同,則滿足要求的發(fā)帽子的方法種數(shù)為
 
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:概率與統(tǒng)計(jì)
分析:第一位學(xué)生可有3種選擇方法,第二位學(xué)生可有2種選擇方法,依此類推,第10位學(xué)生可有2種選擇方法,可有3×29種選擇方法,但是會(huì)出現(xiàn)以下不符合題意的情況:
紅黃紅黃紅黃紅黃紅黃,類似情況共有3×2=6種,即可得出.
解答: 解:第一位學(xué)生可有3種選擇方法,第二位學(xué)生可有2種選擇方法,依此類推,第10位學(xué)生可有2種選擇方法,可有3×29種選擇方法,但是會(huì)出現(xiàn)以下不符合題意的情況:
紅黃紅黃紅黃紅黃紅黃,類似情況共有3×2=6種,因此滿足要求的發(fā)帽子的方法種數(shù)為3×29-3×2=1530.
故答案為:1530.
點(diǎn)評(píng):本題考查了計(jì)數(shù)原理的應(yīng)用、分類討論的思想方法,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a>b>c)且f(1)=0且存在實(shí)數(shù)m使f(m)=-a,試推理f(x)在[0,+∞)上是否為單調(diào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(diǎn)(0,
3
),離心率為
1
2
,左、右焦點(diǎn)分別為F1(-c,0)與F2(c,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C與x軸負(fù)半軸交點(diǎn)為A,過點(diǎn)M(-4,0)作斜率為k(k≠0)的直線l,交橢圓C于B、D兩點(diǎn)(B在M、D之間),N為BD中點(diǎn),并設(shè)直線ON的斜率為k1
(i)證明:k•k1為值;
(ii)是否存在實(shí)數(shù)k,使得F1N⊥AD?如果存在,求直線l的方程;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)動(dòng)點(diǎn)P(x,y)到定點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離大l.
(1)求動(dòng)點(diǎn)P的軌跡ABCD的方程;
(2)已知點(diǎn)A(3,2),求|PA|+|PF|的最小值及此時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x+φ),其中φ為實(shí)數(shù),且|φ|<π,若f(x)≤|f(
π
3
)|,對(duì)x∈R恒成立,又f(
π
2
)<f(
2
3
π
);
(1)求f(x)的解析式;
(2)用五點(diǎn)作圖法畫出函數(shù)f(x)一個(gè)周期內(nèi)的簡(jiǎn)圖,并寫出f(x)的單調(diào)遞減區(qū)間;
(3)將函數(shù)y=f(x)的圖象向右平移
π
4
個(gè)單位得到函數(shù)g(x)圖象,求當(dāng)時(shí)x∈[-
π
12
,
5
12
π]
時(shí),g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=2n-1,n=1,2,3,…,那么數(shù)列{an}( 。
A、是等差數(shù)列但不是等比數(shù)列
B、是等比數(shù)列但不是等差數(shù)列
C、既是等差數(shù)列又是等比數(shù)列
D、既不是等差數(shù)列也不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2010年上海世博會(huì)是世博會(huì)歷史上首次在發(fā)展中國(guó)家舉辦的綜合性世博會(huì),上海世博會(huì)的主題是:城市,讓生活更美好,大會(huì)期間,某超市的世博會(huì)吉祥物海寶在過去的近20天內(nèi)的銷售量(件)與價(jià)格(元)均為時(shí)間t(天)的函數(shù),且銷售量近似滿足g(t)=80-2t(件),價(jià)格近似滿足f(t)=20-
1
2
|t-10|(元).
(1)試寫出“海寶”的日銷售額y與時(shí)間t(0<t≤20)的函數(shù)表達(dá)式;
(2)求“海寶”的日銷售額y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,若不等式
m
3a+b
-
3
a
-
1
b
≤0恒成立,則m的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(0,1),B(1,0),若直線y=k(x+1)與線段AB總有公共點(diǎn),則k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案