【題目】已知函數(shù)y=f(x)的定義在實(shí)數(shù)集R上的奇函數(shù),且當(dāng)x∈(﹣∞,0)時(shí),xf′(x)<f(﹣x)(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a= f( ),b=(lg3)f(lg3),c=(log2 )f(log2 ),則(
A.c>a>b
B.c>b>a
C.a>b>c
D.a>c>b

【答案】A
【解析】解:設(shè)F(x)=xf(x),得F'(x)=x'f(x)+xf'(x)=xf'(x)+f(x),
∵當(dāng)x∈(﹣∞,0)時(shí),xf′(x)<f(﹣x),且f(﹣x)=﹣f(x)
∴當(dāng)x∈(﹣∞,0)時(shí),xf′(x)+f(x)<0,即F'(x)<0
由此可得F(x)=xf(x)在區(qū)間(﹣∞,0)上是減函數(shù),
∵函數(shù)y=f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),
∴F(x)=xf(x)是定義在實(shí)數(shù)集R上的偶函數(shù),在區(qū)間(0,+∞)上F(x)=xf(x)是增函數(shù).
∵0<lg3<lg10=1, ∈(1,2)
∴F(2)>F( )>F(lg3)
=﹣2,從而F( )=F(﹣2)=F(2)
∴F( )>F( )>F(lg3)
>(lg3)f(lg3),得c>a>b
所以答案是:A
【考點(diǎn)精析】本題主要考查了對數(shù)值大小的比較和導(dǎo)數(shù)的幾何意義的相關(guān)知識點(diǎn),需要掌握幾個(gè)重要的對數(shù)恒等式:,,;常用對數(shù):,即;自然對數(shù):,即(其中…);通過圖像,我們可以看出當(dāng)點(diǎn)趨近于時(shí),直線與曲線相切.容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時(shí),函數(shù)處的導(dǎo)數(shù)就是切線PT的斜率k,即才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=cos2x+asinx在區(qū)間( , )是減函數(shù),則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓經(jīng)過點(diǎn),離心率為

(1)求的方程;

(2)過的左焦點(diǎn)且斜率不為的直線相交于兩點(diǎn),線段的中點(diǎn)為,直線與直線相交于點(diǎn),若為等腰直角三角形,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:y=2x2 , 直線l:y=kx+2交C于A,B兩點(diǎn),M是線段AB的中點(diǎn),過M作x軸的垂線C于點(diǎn)N.
(1)證明:拋物線C在點(diǎn)N處的切線與AB平行;
(2)是否存在實(shí)數(shù)k使以AB為直徑的圓M經(jīng)過點(diǎn)N,若存在,求k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如今,中國的“雙十一”已經(jīng)從一個(gè)節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商分析近8年“雙十一”期間的宣傳費(fèi)用 (單位:萬元)和利潤 (單位:十萬元)之間的關(guān)系,得到下列數(shù)據(jù):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

請回答:

(Ⅰ)請用相關(guān)系數(shù)說明之間是否存在線性相關(guān)關(guān)系(當(dāng)時(shí),說明之間具有線性相關(guān)關(guān)系);

(Ⅱ)根據(jù)1的判斷結(jié)果,建立之間的回歸方程,并預(yù)測當(dāng)時(shí),對應(yīng)的利潤為多少(精確到).

附參考公式:回歸方程中最小二乘估計(jì)分別為,,

相關(guān)系數(shù).

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:不等式x2+(m﹣1)x+1>0的解集為R;q:x∈(0,+∞),m≤x+ 恒成立.若“p且q”為假命題,“p或q”為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的個(gè)數(shù)是(
①對于命題p:x∈R,使得x2+x﹣1<0,則¬p:x∈R,均有x2+x﹣1>0;
②p是q的必要不充分條件,則¬p是¬q的充分不必要條件;
③命題“若x=y,則sinx=siny”的逆否命題為真命題;
④“m=﹣1”是“直線l1:mx+(2m﹣1)y+1=0與直線l2:3x+my+3=0垂直”的充要條件.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是 (t為參數(shù)).
(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;
(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B,C,D四點(diǎn)共面,且CD=1,BC=2,AB=4,∠ABC=120°,cos∠BDC=

(1)求sin∠DBC;
(2)求AD.

查看答案和解析>>

同步練習(xí)冊答案