求下面函數(shù)的最值:

(1)y=x2;(2)y=|x+1|+|x-1|.

答案:
解析:

  解:(1)(單調(diào)法)函數(shù)y=x2的定義域是[0,+∞),可以證明函數(shù)y=x2在定義域內(nèi)是增函數(shù),則有f(x)≥f(0)=0+0=0,即函數(shù)y=x2+x有最小值0,無最大值.

  (2)解法一(圖像法):y=|x+1|+|x-1|=其圖像如圖所示.

  由圖像得函數(shù)的最小值是2,無最大值;

  解法二(數(shù)形結(jié)合):函數(shù)的解析式y(tǒng)=|x+1|+|x-1|的幾何意義是:y是數(shù)軸上任意一點(diǎn)P到±1的對應(yīng)點(diǎn)A,B的距離的和,即y=|PA|+|PB|,如圖所示,

  觀察數(shù)軸可得|PA|+|PB|≥|AB|=2,即函數(shù)有最小值2,無最大值.


提示:

  思路分析:本題主要考查函數(shù)的最值及其求法.對于不同的函數(shù)采用不同的求法.(1)利用函數(shù)的單調(diào)性求最值;(2)可以畫圖像,也可以對解析式賦予幾何意義,數(shù)形結(jié)合求最值.

  綠色通道:求函數(shù)最值的方法:

  圖像法:依據(jù)函數(shù)最值的幾何意義,借助圖像寫出最值.

  單調(diào)法:先判斷函數(shù)的單調(diào)性,再利用其單調(diào)性求最值.常用到下面的結(jié)論:①如果函數(shù)y=f(x)在區(qū)間(a,b]上單調(diào)遞增,在區(qū)間[b,c)上單調(diào)遞減,則函數(shù)y=f(x)在x=b處有最大值f(b);②如果函數(shù)y=f(x)在區(qū)間(a,b]上單調(diào)遞減,在區(qū)間[b,c)上單調(diào)遞增,則函數(shù)y=f(x)在x=b處有最小值f(b).

  數(shù)形結(jié)合:將函數(shù)的解析式賦予幾何意義,結(jié)合圖形利用其幾何意義求最值.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)一模)對于函數(shù)f1(x),f2(x),h(x),如果存在實(shí)數(shù)a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數(shù).
(1)下面給出兩組函數(shù),h(x)是否分別為f1(x),f2(x)的生成函數(shù)?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)
;
第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設(shè)f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數(shù)h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍.
(3)設(shè)f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數(shù)h(x)圖象的最低點(diǎn)坐標(biāo)為(2,8).若對于任意正實(shí)數(shù)x1,x2且x1+x2=1,試問是否存在最大的常數(shù)m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個(gè)m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)滿足下面兩個(gè)條件,求a的取值范圍.
①在(-∞,1]上存在極值,
②對于任意的θ∈R,c∈R直線l:xsinθ+2y+c=0都不是函數(shù)y=f(x)(x∈(-1,+∞))圖象的切線;
(2)若點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上三點(diǎn),且2x2=x1+x3,當(dāng)a>0時(shí),△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下面函數(shù)的最大值和最小值.

fx)=x3-3x2+6x-2(-1≤x≤1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下面函數(shù)的最大值和最小值.

fx)=x3-3x2+6x-2(-1≤x≤1).

查看答案和解析>>

同步練習(xí)冊答案