若點(diǎn)P到定點(diǎn)(0,10)與到定直線y =的距離之比是,則點(diǎn)P的軌跡方程是( )
A.B.C.D.
選D
根據(jù)雙曲線的定義知,P點(diǎn)的軌跡是焦點(diǎn)在y軸上的雙曲線,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
設(shè)橢圓過(guò)點(diǎn),且著焦點(diǎn)為
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)過(guò)點(diǎn)的動(dòng)直線與橢圓相交與兩不同點(diǎn)時(shí),在線段上取點(diǎn),滿足,證明:點(diǎn)總在某定直線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

的周長(zhǎng)為16,且,則頂點(diǎn)的軌跡是(      )
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率,過(guò)橢圓的右焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為(1)求橢圓的標(biāo)準(zhǔn)方程;(2)已知直線L與橢圓相交于P、Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ。試探究點(diǎn)O到直線L的距離是否為定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)定點(diǎn)F1(0,-3)、F2(0,3),動(dòng)點(diǎn)P滿足條件,則點(diǎn)P的軌跡是(   )。
A.橢圓B.線段C.橢圓或線段D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的焦點(diǎn)為,點(diǎn)P為其上的動(dòng)點(diǎn),當(dāng)為鈍角時(shí),點(diǎn)P橫坐標(biāo)的取值范圍是_________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)定點(diǎn)M1(0,-3),M2(0,3),動(dòng)點(diǎn)P滿足條件|PM1|+|PM2|=a+
9
a
(其中a是正常數(shù)),則點(diǎn)P的軌跡是( 。
A.橢圓B.線段C.橢圓或線段D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn),
(1)設(shè)橢圓C上的點(diǎn)(
3
,
3
2
)到F1,F(xiàn)2兩點(diǎn)距離之和等于4,寫出橢圓C的方程和焦點(diǎn)坐標(biāo)
(2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段KF1的中點(diǎn)B的軌跡方程
(3)設(shè)點(diǎn)P是橢圓C上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為kPM,KPN試探究kPM•KPN的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓中心在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,離心率是
2
2
,過(guò)點(diǎn)(4,0),則橢圓的方程是( 。
A.
x2
16
+
y2
8
=1
B.
x2
16
+
y2
8
=1
x2
8
+
y2
16
=1
C.
x2
16
+
y2
32
=1
D.
x2
16
+
y2
8
=1
x2
16
+
y2
32
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案