已知函數(shù)若存在函數(shù)使得恒成立,則稱(chēng)的一個(gè)“下界函數(shù)”.
(I) 如果函數(shù)為實(shí)數(shù)的一個(gè)“下界函數(shù)”,求的取值范圍;
(Ⅱ)設(shè)函數(shù) 試問(wèn)函數(shù)是否存在零點(diǎn),若存在,求出零點(diǎn)個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

(I) (Ⅱ)函數(shù)不存在零點(diǎn).

解析試題分析:(I)解法一:由 得          1分
                   2分
當(dāng)時(shí), 所以上是減函數(shù),
當(dāng)時(shí), 所以上是增函數(shù),     3分
因此 即                 5分
解法二:由 得 
設(shè)                1分
(1)若
上是增函數(shù),在上是減函數(shù),          2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/39/1/1bwie4.png" style="vertical-align:middle;" />恒成立,所以解得      3分
(2)若當(dāng)時(shí),
此與恒成立矛盾,故舍去;               4分
綜上得                            5分
(Ⅱ)解法一:函數(shù)
由(I)知                6分
                 7分
設(shè)函數(shù)
(1)當(dāng)時(shí),
上是減函數(shù),在上是增函數(shù),

因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2d/d/1hzjp2.png" style="vertical-align:middle;" /> 所以 即            8分
(2)當(dāng)時(shí),         9分
綜上知 所以函數(shù)不存在零點(diǎn).              10分
解法二:前同解法一,      7分
 則
所以上是減函數(shù),在上是增函數(shù),
因此             &nbs

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直,導(dǎo)函數(shù)的最小值為
(1)求,,的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(Ⅰ)若曲線(xiàn)處的切線(xiàn)互相平行,求的值及函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若對(duì)任意,均存在,使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)求的單調(diào)區(qū)間.
(3)設(shè),如果過(guò)點(diǎn)可作曲線(xiàn)的三條切線(xiàn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)設(shè),試比較的大;
(2)是否存在常數(shù),使得對(duì)任意大于的自然數(shù)都成立?若存在,試求出的值并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=x3-12x+5,x∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)若關(guān)于x的方程f(x)=a有三個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),.(其中為自然對(duì)數(shù)的底數(shù)).
(1)設(shè)曲線(xiàn)處的切線(xiàn)與直線(xiàn)垂直,求的值;
(2)若對(duì)于任意實(shí)數(shù)≥0,恒成立,試確定實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),是否存在實(shí)數(shù),使曲線(xiàn)C:在點(diǎn)處的切線(xiàn)與軸垂直?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)。
(1)求函數(shù)的最小值;
(2)設(shè),討論函數(shù)的單調(diào)性;
(3)斜率為的直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若函數(shù)上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案