3.已知集合A={x|x2-2x+2a-a2≤0},B={x|sin(πx-$\frac{π}{3}}$)+$\sqrt{3}$cos(πx-$\frac{π}{3}}$)=0}.
(1)若2∈A,求a的取值范圍;
(2)若A∩B恰有3個(gè)元素,求a的取值范圍.

分析 (1)根據(jù)2∈A,代入A中不等式求出a的取值范圍;
(2)利用因式分解法確定集合A的兩個(gè)端點(diǎn),由兩角和的正弦公式、正弦函數(shù)的性質(zhì)化簡B,根據(jù)條件對a分類討論,分別由條件列出關(guān)于a的不等式,求出解集即可.

解答 解:(1)∵集合A={x|x2-2x+2a-a2≤0},且2∈A,
∴4-4+2a-a2≤0,化簡得,a2-2a≥0,
解得a≤0或a≥2,
∴a的取值范圍是{a|a≤0或a≥2};
(2)∵A={x|x2-2x+2a-a2≤0}={x|(x-a)[x-(2-a)]≤0},
∴其方程兩根為a和2-a,A的兩個(gè)端點(diǎn)是a與2-a;
∵$B=\left\{{x\left|{sin({πx-\frac{π}{3}})+\sqrt{3}cos({πx-\frac{π}{3}})=0}\right.}\right\}$
={x|2sin(πx-$\frac{π}{3}$+$\frac{π}{3}$)=0}={x|sinπx=0}={x|x∈Z},
由題意得,A∩B恰有3個(gè)元素,
①、當(dāng)a不是整數(shù)時(shí),有3≤|a-(2-a)|<4,
即$\left\{\begin{array}{l}{|a-1|<2}\\{|a-1|≥\frac{3}{2}}\end{array}\right.$,解得-1<a≤-$\frac{1}{2}$或$\frac{5}{2}$≤a<3,
則-1<a≤-$\frac{1}{2}$或$\frac{5}{2}$≤a<3=2;
②、當(dāng)a是整數(shù)時(shí),2-a也是整數(shù),
則|a-(2-a)|=2,解得a=0或2,
綜上,a的取值范圍是{a|-1<a≤-$\frac{1}{2}$或$\frac{5}{2}$≤a<3或a=0或a=2}.

點(diǎn)評 本題考查了集合的概念與運(yùn)算,兩角和的正弦公式、正弦函數(shù)的性質(zhì),以及不等式解法的應(yīng)用,考查分類討論思想,化簡、變形能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}},x≤0\\{x^{\frac{1}{2}}},x>0\end{array}\right.$,則f(-2)+f(1)=( 。
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若圓x2+y2=1與圓x2+y2+6x-8y+m=0相切,則m的值為-11或9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=20,則a3等于( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x≥5,則f(x)=$\frac{{x}^{2}-4x+9}{x-4}$有( 。
A.最大值8B.最小值10C.最大值12D.最小值14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p:$\frac{1}{a}$>$\frac{1}{4}$,命題q:?x∈R,ax2+1>0,則p成立是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)F1,F(xiàn)2是橢圓C1:$\frac{x^2}{{{a_1}^2}}+\frac{y^2}{{{b_1}^2}}$=1(a1>b1>0)與雙曲線C2:$\frac{x^2}{{{a_2}^2}}-\frac{y^2}{{{b_2}^2}}$=1(a2>0,b2>0)的公共焦點(diǎn),曲線C1,C2在第一象限內(nèi)交于點(diǎn)M,∠F1MF2=90°,若橢圓C1的離心率e1∈[$\frac{{\sqrt{6}}}{3}$,1),則雙曲線C2的離心率e2的范圍是(  )
A.$({1,\sqrt{3}}]$B.$({1,\sqrt{2}}]$C.$[{\sqrt{3},+∞})$D.$[{\sqrt{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“x=1”是“x2+x-2=0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若命題:“?x∈R,使得ax2+(a-3)x+1<0”為假命題.則實(shí)數(shù)a的范圍為( 。
A.0<a≤1或a≥9B.a≤1或a≥9C.1≤a≤9D.a≥9

查看答案和解析>>

同步練習(xí)冊答案