【題目】在直角坐標(biāo)系中,以原點為極點,軸正半軸為極軸建立極坐標(biāo)系.若曲線的極坐標(biāo)方程為,點的極坐標(biāo)為,在平面直角坐標(biāo)系中,直線經(jīng)過點,且傾斜角為.
(1)寫出曲線的直角坐標(biāo)方程以及點的直角坐標(biāo);
(2)設(shè)直線與曲線相交于,兩點,求的值.
【答案】(1)曲線的直角坐標(biāo)方程為;點的直角坐標(biāo)為(2)
【解析】
(1)由極坐標(biāo)與直角坐標(biāo)的互化可得的直角坐標(biāo)方程為,點的直角坐標(biāo)為;
(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用直線的參數(shù)方程中的幾何意義,再求解即可.
解:(1)曲線的極坐標(biāo)方程化為直角坐標(biāo)方程為,
點的極坐標(biāo)為:,化為直角坐標(biāo)為.
(2)直線的參數(shù)方程為,即(為參數(shù)),
將的參數(shù)方程代入曲線的直角坐標(biāo)方程,得,
整理得:,
顯然有,則,,
,,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間及極值;
(2)設(shè)時,存在,使方程成立,求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,為自然對數(shù)的底數(shù).
(1)當(dāng)時,證明:,;
(2)若函數(shù)在上存在兩個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,平面,是等腰三角形,,是的一個三等分點(靠近點),與的延長線交于點,連接.
(1)求異面直線與所成角的余弦值;
(2)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的各項均為正數(shù),其前項和為,且滿足,若數(shù)列滿足,且等式對任意成立.
(1)求數(shù)列的通項公式;
(2)將數(shù)列與的項相間排列構(gòu)成新數(shù)列,設(shè)該新數(shù)列為,求數(shù)列的通項公式和前項的和;
(3)對于(2)中的數(shù)列前項和,若對任意都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結(jié)論中錯誤的是( )
A. f(x)是偶函數(shù)
B. 函數(shù)f(x)最小值為
C. 是函數(shù)f(x)的一個周期
D. 函數(shù)f(x)在內(nèi)是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)在平面直角坐標(biāo)系xOy中,A(﹣2,0),B(0,﹣2),M是曲線C上任意一點,求△ABM面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com