已知O是△ABC所在平面內(nèi)一點,D為BC邊中點,且4
OA
+
OB
+
OC
=
0
,那么(  )
分析:由向量的中點公式可得
OB
+
OC
=2
OD
,代入已知式子化簡即得.
解答:解:∵D為BC邊中點,
OB
+
OC
=2
OD
,
代入已知可得4
OA
+2
OD
=
0
,
OD
=-2
OA
,
故可得2
AO
=
OD

故選D
點評:本題考查向量的基本運算,利用向量的中點公式是解決問題的關鍵,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知O是△ABC所在平面內(nèi)一點,D為BC邊中點,且2
OA
+
OB
+
OC
=
0
,那么( 。
A、
AO
=
OD
B、
AO
=2
OD
C、
AO
=3
OD
D、2
AO
=
OD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O是△ABC所在平面內(nèi)一點,且滿足
BA
OA
+|
BC
|2=
AB
OB
+|
AC
|2
,則點O( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O是△ABC所在平面內(nèi)的一定點,動點P滿足
OP
=
OA
+λ(
AB
|
AB
|
+
AC
|
AC
|
)
,λ∈(0,+∞),則動點P的軌跡一定通過△ABC的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知O是△ABC所在平面內(nèi)一點,D為BC邊中點,且2
OA
+
OB
+
OC
=0
,那么
AO
OD
的關系是
AO
=
OD
AO
=
OD

查看答案和解析>>

同步練習冊答案