11.設(shè)向量$\overrightarrow a=(1+sinx,cosx+sinx)$,$\overrightarrow b$=(2sinx,cosx-sinx),$f(x)=\overrightarrow a•\overrightarrow b$.
(1)求函數(shù)f(x)的解析式;
(2)已知常數(shù)ω>0,若y=f(ωx)在區(qū)間$[{0,\frac{2π}{3}}]$上是增函數(shù),求ω的取值范圍.

分析 (1)利用平面向量的數(shù)量積,化簡(jiǎn)三角函數(shù)式,即可得出函數(shù)的解析式;
(2)根據(jù)正弦型函數(shù)的圖象與性質(zhì),寫出f(ωx)的單調(diào)增區(qū)間,列出不等式求出ω的取值范圍.

解答 解:(1)∵$\overrightarrow a=(1+sinx,cosx+sinx)$,
$\overrightarrow b$=(2sinx,cosx-sinx),
∴$f(x)=\overrightarrow a•\overrightarrow b$
=(1+sinx)•2sinx+(cosx-sinx)•(cosx+sinx)
=2sin x+1,
故函數(shù)解析式為f(x)=2sin x+1;
(2)∵f(ωx)=2sinωx+1,ω>0;
由2kπ-$\frac{π}{2}$≤ωx≤2kπ+$\frac{π}{2}$,
得f(ωx)的增區(qū)間是($\frac{2kπ}{ω}$-$\frac{π}{2ω}$,$\frac{2kπ}{ω}$+$\frac{π}{2ω}$),k∈Z;
∵f(ωx)在$[{0,\frac{2π}{3}}]$上是增函數(shù),
∴$[{0,\frac{2π}{3}}]$⊆(-$\frac{π}{2ω}$,$\frac{π}{2ω}$);
∴0≥-$\frac{π}{2ω}$且$\frac{2π}{3}$≤$\frac{π}{2ω}$,
∴ω∈(0,$\frac{3}{4}$].

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與三角函數(shù)的圖象和性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13..已知:$\overrightarrow{n}$和$\overrightarrow{m}$是兩個(gè)單位向量,其夾角是60°,設(shè)向量$\overrightarrow{a}$=2$\overrightarrow{m}$+$\overrightarrow{n}$、b=2$\overrightarrow{n}$-3$\overrightarrow{m}$.
(1)求|$\overrightarrow{a}$|,|$\overrightarrow$|.
(2)求$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)y=$\sqrt{3}$sin2x+cos2x的最小正周期和振幅分別是( 。
A.π,1B.π,2C.2π,1D.4π,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知?jiǎng)狱c(diǎn)M與點(diǎn)A(1,0)和點(diǎn)B(4,0)的距離之比為$\frac{1}{2}$.
(Ⅰ)求動(dòng)點(diǎn)M的軌跡方程;
(Ⅱ)若P為線段AM的中點(diǎn),試求點(diǎn)P的軌跡方程.并指出軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若某程序框圖如圖所示,則該程序 運(yùn)行后輸出i的值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)集合A={1,2,3,5},集合A∩B={2,5},A∪B={1,2,3,4,5,6},則集合B=( 。
A.{2,5}B.[2,4,5}C.{2,5,6}D.{2,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知p:-2≤x≤10;q:1-m≤x≤1+m(m>0).若¬p是¬q的必要不充分條件,則實(shí)數(shù)m的取值范圍是[9,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,且2S3=5S1+3S2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn=$\frac{1}{_{n}_{n+1}}$,記數(shù)列{cn}的前n項(xiàng)和Tn,求$\frac{{T}_{n}}{n+4}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列四個(gè)函數(shù)在(-∞,0)是增函數(shù)的為( 。
A.f(x)=x2+4B.f(x)=1-2xC.f(x)=-x2-x+1D.f(x)=2-$\frac{3}{x}$

查看答案和解析>>

同步練習(xí)冊(cè)答案