17.下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是(  )
A.y=x+1B.y=-x2C.y=x|x|D.y=x-1

分析 根據(jù)函數(shù)奇偶性和單調(diào)性的性質(zhì)和定義進行判斷即可.

解答 解:A.y=x+1是增函數(shù),關于原點不對稱,故函數(shù)不是奇函數(shù),不滿足條件.
B.y=-x2是偶函數(shù),不滿足條件.
C.y=x|x|=$\left\{\begin{array}{l}{{x}^{2},}&{x≥0}\\{-{x}^{2},}&{x<0}\end{array}\right.$,則函數(shù)在定義域上是增函數(shù),f(-x)=-x|-x|=-x|x|=-f(x),
則函數(shù)f(x)是奇函數(shù),滿足條件.
D.y=x-1是奇函數(shù),則定義域上(-∞,0)∪(0,+∞)上不是單調(diào)函數(shù),不滿足條件.
故選:C.

點評 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,根據(jù)函數(shù)奇偶性和單調(diào)性的性質(zhì)是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.“若x=0或x=1,則x2-x=0”的否命題為( 。
A.若x=0或x=1,則x2-x≠0B.若x2-x=0,則x=0或x=1
C.若x≠0或x≠1,則x2-x≠0D.若x≠0且x≠1,則x2-x≠0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若直線l與平面α相交,則(  )
A.平面α內(nèi)存在直線與l異面B.平面α內(nèi)存在唯一直線與l平行
C.平面α內(nèi)存在唯一直線與l垂直D.平面α內(nèi)的直線與l都相交

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(3x2-ax+5)在[-1,+∞)上單調(diào)遞減,則實數(shù)a的取值范圍是(  )
A.[-8,-6]B.(-8,-6]C.(-∞,-8)∪(-6,+∞)D.(-∞,-6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若$\int_1^2$(x-a)dx=$\frac{1}{2}}$,則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.第13屆夏季奧林匹克運動會2016年8月5日到2016年8月21日在巴西里約熱內(nèi)盧舉行,為了解我校學生“收看奧運會足球賽”是否與性別有關,從全校學生中隨機抽取30名進行了問卷調(diào)查,得到2×2列聯(lián)表,從這30名同學中隨機抽取1人,抽到“收看奧運會足球賽”的學生的概率是$\frac{8}{15}$.
男生女生合計
收看10
不收看8
合計30
(1)請將上面的2×2列聯(lián)表補充完整,并據(jù)此資料分析“收看奧運會足球賽”與性別是否有關;
(2)若從這30名同學中的男同學中隨機抽取2人參加有獎競猜活動,記抽到“收看奧運會足球賽”的學生人數(shù)為X,求X的分布列和數(shù)學期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(x2≥k)0.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.點(-1,2)到直線y=x-1的距離是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)y=$\frac{ax+1}{2x-3}$的圖象與其反函數(shù)圖象重合,則a=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.定義在R上的偶函數(shù)在[0,7]上是增函數(shù),又f(7)=6,則f(x)( 。
A.在[-7,0]上是增函數(shù),且最大值是6B.在[-7,0]上是減函數(shù),且最大值是6
C.在[-7,0]上是增函數(shù),且最小值是6D.在[-7,0]上是減函數(shù),且最小值是6

查看答案和解析>>

同步練習冊答案