【題目】設(shè)點(diǎn)P在曲線 上,點(diǎn)Q在曲線y=ln(2x)上,則|PQ|最小值為( )
A.1﹣ln2
B.
C.1+ln2
D.
【答案】B
【解析】解:∵函數(shù) 與函數(shù)y=ln(2x)互為反函數(shù),圖象關(guān)于y=x對(duì)稱,
函數(shù) 上的點(diǎn) 到直線y=x的距離為 ,
設(shè)g(x)= (x>0),則 ,
由 ≥0可得x≥ln2,
由 <0可得0<x<ln2,
∴函數(shù)g(x)在(0,ln2)單調(diào)遞減,在[ln2,+∞)單調(diào)遞增,
∴當(dāng)x=ln2時(shí),函數(shù)g(x)min=1﹣ln2,
,
由圖象關(guān)于y=x對(duì)稱得:|PQ|最小值為 .
故選B.
由于函數(shù) 與函數(shù)y=ln(2x)互為反函數(shù),圖象關(guān)于y=x對(duì)稱,要求|PQ|的最小值,只要求出函數(shù) 上的點(diǎn) 到直線y=x的距離為 的最小值,
設(shè)g(x)= ,利用導(dǎo)數(shù)可求函數(shù)g(x)的單調(diào)性,進(jìn)而可求g(x)的最小值,即可求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( )
A.y= 與y=x+1
B.y=lgx與y= lgx2
C.y= ﹣1與y=x﹣1
D.y=x與y=logaax(a>0且a≠1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)函數(shù)中,在(0,+∞)上為增函數(shù)的是( )
A.f(x)=3﹣x
B.f(x)=x2﹣3x
C.f(x)=﹣
D.f(x)=﹣|x|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的兩個(gè)部門招聘工作人員,應(yīng)聘者從 T1、T2兩組試題中選擇一組參加測(cè)試,成績(jī)合格者可簽約.甲、乙、丙、丁四人參加應(yīng)聘考試,其中甲、乙兩人選擇使用試題 T1 , 且表示只要成績(jī)合格就簽約;丙、丁兩人選擇使用試題 T2 , 并約定:兩人成績(jī)都合格就一同簽約,否則兩人都不簽約.已知甲、乙考試合格的概率都是 ,丙、丁考試合格的概率都是 ,且考試是否合格互不影響.
(1)求丙、丁未簽約的概率;
(2)記簽約人數(shù)為 X,求 X的分布列和數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對(duì)于一切實(shí)數(shù)x,y均有f(x+y)﹣f(y)=x(x+2y+1)成立,且f(1)=0,則當(dāng)x∈(0, ),不等式f(x)+2<logax恒成立時(shí),實(shí)數(shù)a的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2﹣2x.
(1)畫出f(x)的簡(jiǎn)圖,并求f(x)的解析式;
(2)利用圖象討論方程f(x)=k的根的情況.(只需寫出結(jié)果,不要解答過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[a,b]D,使得函數(shù)f(x)滿足:
①f(x)在[a,b]上是單調(diào)函數(shù);
②f(x)在[a,b]上的值域是[2a,2b],則稱區(qū)間[a,b]是函數(shù)f(x)的“和諧區(qū)間”.
下列結(jié)論錯(cuò)誤的是( )
A.函數(shù)f(x)=x2(x≥0)存在“和諧區(qū)間”
B.函數(shù)f(x)=2x(x∈R)存在“和諧區(qū)間”
C.函數(shù)f(x)= (x>0)不存在“和諧區(qū)間”
D.函數(shù)f(x)=log2x(x>0)存在“和諧區(qū)間”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下是某地搜集到的新房屋的銷售價(jià)格和房屋的面積的數(shù)據(jù):
房屋面積() | 115 | 110 | 80 | 135 | 105 |
銷售價(jià)格(萬(wàn)元) | 24.8 | 21.6 | 18.4 | 29.2 | 22 |
(1)畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線;
(3)據(jù)(2)的結(jié)果估計(jì)當(dāng)房屋面積為150時(shí)的銷售價(jià)格.附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com