函數(shù)y=cosx的對稱軸方程為
x=kπ,k∈Z
x=kπ,k∈Z
分析:利用余弦函數(shù)的對稱性即可求得答案.
解答:解:∵y=cosx的對稱軸方程為x=kπ,k∈Z,
故答案為:x=kπ,k∈Z.
點(diǎn)評:本題考查余弦函數(shù)的對稱性,掌握余弦函數(shù)的對稱軸方程是關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•江蘇模擬)某學(xué)生對函數(shù)f(x)=2x•cosx的性質(zhì)進(jìn)行研究,得出如下的結(jié)論:
①函數(shù)f(x)在[-π,0]上單調(diào)遞增,在[0,π]上單調(diào)遞減;
②點(diǎn)(
π2
,0)
是函數(shù)y=f(x)圖象的一個(gè)對稱中心;
③函數(shù)y=f(x)圖象關(guān)于直線x=π對稱;
④存在常數(shù)M>0,使|f(x)|≤M|x|對一切實(shí)數(shù)x均成立.
其中正確的結(jié)論是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生對函數(shù)f(x)=2x•cosx的性質(zhì)進(jìn)行研究,得出如下的4個(gè)結(jié)論,其中正確的結(jié)論是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
(1)函數(shù)y=3sin
x
2
+4cos
x
2
的定義域?yàn)閇0,2π],則值域?yàn)閇-5,5];
(2)三角方程tan(5x+
9
)=
2
在[0,π]內(nèi)有5個(gè)解;
(3)對任意的α∈R,三角公式sin2α=
2tanα
1+tan2α
是一定成立的;
(4)函數(shù)y=cosx與y=arccosx(|x|≤1)互為反函數(shù).
其中正確的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•資中縣模擬)在函數(shù)y=3x,y=log3x,y=tanx,y=sinx,y=cosx中,滿足“對[0,1]中任意的x1,x2,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
恒成立”個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 
a
=(1,cosx),
b
=(sin2x,2cosx),且f(x)=
a
b
-1
(1)求函數(shù)y=f(x),x∈[0,π]的單調(diào)增區(qū)間;
(2)三角形ABC中,a,b,c分別為角A,B,C的對邊,若b=
2
,c=1且f(A)=1,求a的值.

查看答案和解析>>

同步練習(xí)冊答案