精英家教網 > 高中數學 > 題目詳情
袋中有4個形狀大小一樣的球,編號分別為1,2,3,4,從中任取2個球,則這2個球的編號之和為偶數的概率為( 。
分析:根據題意,列舉可得從4個球中取出2個,所得的編號的情況,進而可得其中編號之和為偶數數目,由古典概型公式,計算可得答案.
解答:解:根據題意,從4個球中取出2個,
其編號的情況有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6種;
其中編號之和為偶數的有(1,3),(2,4),共2種;
則2個球的編號之和為偶數的概率P=
2
6
=
1
3
;
故選D.
點評:本題考查古典概型的計算,關鍵是由列舉法得到全部基本事件與符合條件的基本事件的數目.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

一個袋中裝有6個形狀大小完全相同的小球,球的編號分別為1,2,3,4,5,6.
(Ⅰ)若從袋中每次隨機抽取1個球,有放回的抽取3次,求恰有2次抽到6號球的概率;
(Ⅱ)若一次從袋中隨機抽取3個球,記球的最大編號為X,求隨機變量X的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

一個袋中裝有6個形狀大小完全相同的小球,球的編號分別為1,2,3,4,5,6.
(Ⅰ)若從袋中每次隨機抽取1個球,有放回的抽取2次,求取出的兩個球編號之和為6的概率;
(Ⅱ)若從袋中每次隨機抽取2個球,有放回的抽取3次,求恰有2次抽到6號球的概率;
(Ⅲ)若一次從袋中隨機抽取3個球,記球的最大編號為X,求隨機變量X的分布列.

查看答案和解析>>

科目:高中數學 來源:北京期末題 題型:解答題

一個袋中裝有6個形狀大小完全相同的小球,球的編號分別為1,2,3,4,5,6,
(1)若從袋中每次隨機抽取1個球,有放回的抽取2次,求取出的兩個球編號之和為6的概率;
(2)若從袋中每次隨機抽取2個球,有放回的抽取3次,求恰有2次抽到6號球的概率;
(3)若一次從袋中隨機抽取3個球,記球的最大編號為X,求隨機變量X的分布列.

查看答案和解析>>

科目:高中數學 來源:北京期末題 題型:解答題

一個袋中裝有6個形狀大小完全相同的小球,球的編號分別為1,2,3,4,5,6。
(Ⅰ)若從袋中每次隨機抽取1個球,有放回的抽取2次,求取出的兩個球編號之和為6的概率;
(Ⅱ)若從袋中每次隨機抽取2個球,有放回的抽取3次,求恰有2次抽到6號球的概率;
(Ⅲ)若一次從袋中隨機抽取3個球,記球的最大編號為X,求隨機變量X的分布列。

查看答案和解析>>

科目:高中數學 來源:2010-2011學年北京市西城區(qū)高三(上)期末數學試卷(理科)(解析版) 題型:解答題

一個袋中裝有6個形狀大小完全相同的小球,球的編號分別為1,2,3,4,5,6.
(Ⅰ)若從袋中每次隨機抽取1個球,有放回的抽取2次,求取出的兩個球編號之和為6的概率;
(Ⅱ)若從袋中每次隨機抽取2個球,有放回的抽取3次,求恰有2次抽到6號球的概率;
(Ⅲ)若一次從袋中隨機抽取3個球,記球的最大編號為X,求隨機變量X的分布列.

查看答案和解析>>

同步練習冊答案