【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為(
A.20π
B.24π
C.28π
D.32π

【答案】C
【解析】解:由三視圖知,空間幾何體是一個(gè)組合體, 上面是一個(gè)圓錐,圓錐的底面直徑是4,圓錐的高是2 ,
∴在軸截面中圓錐的母線(xiàn)長(zhǎng)是 =4,
∴圓錐的側(cè)面積是π×2×4=8π,
下面是一個(gè)圓柱,圓柱的底面直徑是4,圓柱的高是4,
∴圓柱表現(xiàn)出來(lái)的表面積是π×22+2π×2×4=20π
∴空間組合體的表面積是28π,
故選:C.
空間幾何體是一個(gè)組合體,上面是一個(gè)圓錐,圓錐的底面直徑是4,圓錐的高是2 ,在軸截面中圓錐的母線(xiàn)長(zhǎng)使用勾股定理做出的,寫(xiě)出表面積,下面是一個(gè)圓柱,圓柱的底面直徑是4,圓柱的高是4,做出圓柱的表面積,注意不包括重合的平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列是公差不為0的等差數(shù)列, 是等比數(shù)列,且

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前n項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集為R,集合A={x| ≤0},集合B={x||2x+1|>3}.求A∩(RB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù), 已知曲線(xiàn)y=f(x)

處的切線(xiàn)與直線(xiàn)垂直。

(1) 的值;

(2) 若對(duì)任意x1,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點(diǎn),且EH∥FG.求證:
(1)EH∥面BCD;
(2)EH∥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓上一點(diǎn), 分別為的左、右焦點(diǎn), , , 的面積為.

(1)求橢圓的方程;

(2)過(guò)點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn),點(diǎn),記直線(xiàn)的斜率分別為,當(dāng)最大時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)三個(gè)向量: =(3,2), =(﹣1,2), =(4,1) (Ⅰ)若( +k )∥(2 ),求實(shí)數(shù)k的值;
(Ⅱ)設(shè) =(x,y),且滿(mǎn)足( + )⊥( ),| |= ,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , , . 

1)求證:平面 平面;

2)設(shè)上的一點(diǎn),滿(mǎn)足,若直線(xiàn)與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a2=3,S5=25.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為T(mén)n , 是否存在k∈N* , 使得等式2﹣2Tk= 成立,若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案