考點:數(shù)學(xué)歸納法,數(shù)列的函數(shù)特性,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:用數(shù)學(xué)歸納法證明.(1)當(dāng)n=1時,結(jié)論成立;(2)假設(shè)n=k時,結(jié)論成立.由此推導(dǎo)出當(dāng)n=k+1時,結(jié)論成立.由(1)(2)知:
<b
n≤
(1+(
-1)
4n-3).
解答:
證明:(1)當(dāng)n=1時,∵
<2,b
1=2,
[1+(-1)]=2,
∴
<b
1≤
(1+(
-1)
4-3).結(jié)論成立.
(2)假設(shè)n=k時,結(jié)論成立,
即:
<b
k≤
(1+(
-1)
4k-3).
則當(dāng)n=k+1時,
bk+1-=
-=
=
>0,
又
<=3-2,
∴
bk+1-=
<(3-2
)
2(b
k-
)
≤(
-1)
4(
(1+(
-1)
4n-3-
)
=
(1+(
-1)
4(n+1)-3)-
.
即n=k+1時,結(jié)論成立.
∴由(1)(2)知:
<b
n≤
(1+(
-1)
4n-3).
點評:本題考查不等式的證明,是中檔題,解題時要認(rèn)真審題,注意數(shù)學(xué)歸納法的合理運用.