13.在同一個袋子中含有不同標號的紅、黑兩種顏色的小球共有8個,從紅球中選取2粒,從黑球中選取1粒,共有30種不同的選法,其中黑球至多有( 。
A.2粒B.4粒C.3粒D.5粒

分析 設(shè)紅球有x粒,則黑球有8-x粒,從紅球中選取2粒,從黑球中選取1粒,共有30種不同的選法,是組合問題,得到關(guān)于x的等式Cx2C8-x1=30,解出x即可.

解答 解:設(shè)紅球有x粒,則黑球有8-x粒,
從紅球中選取2粒,從黑球中選取1粒,共有30種不同的選法,是組合問題,
∴Cx2C8-x1=30,
∴x(x-1)(8-x)=30×2=2×6×5,或x(x-1)(8-x)=3×4×5.
∴x=6,8-6=2.或x=5,8-5=3.
黑球有:2或3粒.
故選:C.

點評 本題考查排列、組合的綜合運用,注意排列與組合的區(qū)別,由x(x-1)(8-x)=60解出x的值運算量與難度都比較大,此時可以驗證選項,進而選出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點P$({sin\frac{2π}{3},cos\frac{2π}{3}})$落在角θ的終邊上,且θ∈[0,2π),則θ值為$\frac{11π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)向量$\overrightarrow{a}$=(cosα,$\frac{\sqrt{2}}{2}$)的模為$\frac{\sqrt{3}}{2}$,則cos2α=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow a{、^{\;}}\overrightarrow b$滿足$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=-\sqrt{3}$,則$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)(x1,y1),(x2,y2),…,(xn,yn)是變量x和y的n個樣本點,直線l是由這些樣本點通過最小二乘法得到的線性回歸直線(如圖),以下結(jié)論中正確的是(  )
A.x和y的相關(guān)系數(shù)在-1和0之間
B.x和y的相關(guān)系數(shù)為直線l的斜率
C.當n為偶數(shù)時,分布在l兩側(cè)的樣本點的個數(shù)一定相同
D.所有樣本點(xi,yi)(i=1,2,…,n)都在直線l上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知X的分布列如表:
X-1012
Pabc$\frac{5}{18}$
且b2=ac,$a=\frac{1}{2}$,則E(X)=( 。
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的前n項和為Sn,且對任意的正整數(shù)n都有2Sn=6-an,數(shù)列{bn}滿足b1=2,且對任意的正整數(shù)n都有${b_{n+1}}-{b_n}=2{log_{\frac{1}{3}}}({\frac{a_n}{18}})$,且數(shù)列$({\frac{1}{b_n}})$的前n項和Tn<m對一切n∈N*恒成立,則實數(shù)m的小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)g(x)=(-x2+ax-3)ex(a為實數(shù)).當a=5時,求函數(shù)y=g(x)在x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{a}_{n}}{{{a}_{n}}^{2}+1}$.
(Ⅰ)求證:an+1<an
(Ⅱ)求證:$\frac{1}{{2}^{n-1}}$≤an≤$\frac{{2}^{n}}{3•{2}^{n}-4}$.

查看答案和解析>>

同步練習(xí)冊答案