8.已知集合A={x|x≤3,x∈R},B={x|x-1≥0,x∈N},則A∩B={1,2,3}.

分析 求出B中不等式解集的自然數(shù)解確定出B,找出A與B的交集即可.

解答 解:由B中不等式解得:x≥1,x∈N,即B={x|x≥1,x∈N},
∵A={x|x≤3,x∈R},
∴A∩B={1,2,3},
故答案為:{1,2,3}

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)扇形的半徑長(zhǎng)為2,圓心角為$\frac{π}{4}$,則扇形的面積是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)$f(x)=a{x^{\frac{1}{5}}}+b{x^3}$+2(a,b為常數(shù)),若f(-3)=5,則f(3)的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列命題中正確的是( 。
A.平行的兩條直線的斜率一定相等B.平行的兩條直線的傾斜角一定相等
C.垂直的兩直線的斜率之積為-1D.斜率相等的兩條直線一定平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,拋物線x2=4y在點(diǎn)$M(t,\;\frac{1}{4}{t^2})\;(t>0)$處的切線與x軸相交于點(diǎn)N,O、F分別為該拋物線的頂點(diǎn)、焦點(diǎn).
(1)當(dāng)t=2時(shí),求切線MN的方程;
(2)當(dāng)t∈(0,1]時(shí),求四邊形OFMN的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+4\;,\;\;0≤x≤2\\ 2x\;,\;\;x>2\end{array}\right.$,若f(x0)=8,則x0=2或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若函數(shù)f(x)滿足:對(duì)于其定義域D內(nèi)的任何一個(gè)自變量x0,都有函數(shù)值f(x0)∈D,則稱函數(shù)f(x)在D上封閉.
(1)若下列函數(shù)的定義域?yàn)镈=(0,1),試判斷其中哪些在D上封閉,并說(shuō)明理由.f1(x)=2x-1,f2(x)=2x-1.
(2)若函數(shù)g(x)=$\frac{5x-a}{x+2}$的定義域?yàn)椋?,2),是否存在實(shí)數(shù)a,使得g(x)在其定義域(1,2)上封閉?若存在,求出所有a的值,并給出證明:若不存在,請(qǐng)說(shuō)明理由.
(3)已知函數(shù)f(x)在其定義域D上封閉,且單調(diào)遞增.若x0∈D且f(f(x0))=x0,求證:f(x0)=x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知f(x)是定義在[0,+∞)上單調(diào)遞增的函數(shù),則滿足$f({2x-1})<f({\frac{1}{3}})$的x取值范圍是( 。
A.$({\frac{1}{2}\;,\;\;\frac{2}{3}})$B.$({-∞\;,\;\;\frac{2}{3}})$C.$[{\frac{1}{2}\;,\;\;\frac{2}{3}})$D.$({-∞\;,\;\;\frac{2}{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.2002年8月,在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖所示,它是由4個(gè)相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是25,小正方形的面積是1,則cos2θ的值等于(  )
A.1B.$-\frac{24}{25}$C.$\frac{7}{25}$D.-$\frac{7}{25}$

查看答案和解析>>

同步練習(xí)冊(cè)答案