(本題12分)已知集合是同時(shí)滿足下列兩個(gè)性質(zhì)的函數(shù)組成的集合:
①在其定義域上是單調(diào)增函數(shù)或單調(diào)減函數(shù);
②在的定義域內(nèi)存在區(qū)間,使得在上的值域是.
(1)判斷函數(shù)是否屬于集合?并說明理由.若是,則請求出區(qū)間;
(2)若函數(shù),求實(shí)數(shù)的取值范圍.
(1)函數(shù)屬于集合,且這個(gè)區(qū)間是
(2)
解析解: (1)的定義域是, 在上是單調(diào)增函數(shù).
設(shè)在上的值域是.由 解得:
故函數(shù)屬于集合,且這個(gè)區(qū)間是
(2) 設(shè),則易知是定義域上的增函數(shù).
,存在區(qū)間,滿足,.
即方程在內(nèi)有兩個(gè)不等實(shí)根.
[法1]:方程在內(nèi)有兩個(gè)不等實(shí)根,令則其化為:
即有兩個(gè)非負(fù)的不等實(shí)根,
從而有:;
[法2]:要使方程在內(nèi)有兩個(gè)不等實(shí)根,
即使方程在內(nèi)有兩個(gè)不等實(shí)根.
如圖,當(dāng)直線經(jīng)過點(diǎn)時(shí),,
當(dāng)直線與曲線相切時(shí),
方程兩邊平方,
得,由,得.
因此,利用數(shù)形結(jié)合得實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分分)
已知函數(shù).(為常數(shù),)
(Ⅰ)若是函數(shù)的一個(gè)極值點(diǎn),求的值;
(Ⅱ)求證:當(dāng)時(shí),在上是增函數(shù);
(Ⅲ)若對任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一塊形狀為直角三角形的鐵皮,直角邊長分別為40cm和60cm,現(xiàn)要將它剪成一個(gè)矩形,并以此三角形的直角為矩形的一個(gè)角,問:怎樣剪,才能使剩下的殘料最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知函數(shù),存在實(shí)數(shù)滿足下列條件:
①;②;③
(1)證明:;
(2)求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知函數(shù)
(1)當(dāng)時(shí),求曲線處的切線方程;
(2)設(shè)的兩個(gè)極值點(diǎn),的一個(gè)零點(diǎn),且證明:存在實(shí)數(shù)按照某種順序排列后構(gòu)成等差數(shù)列,并求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分) 函數(shù)的定義域?yàn)?0,1](為實(shí)數(shù)).
(1)當(dāng)時(shí),求函數(shù)的值域,
(2)當(dāng)時(shí),求函數(shù)在上的最小值,并求出函數(shù)取最小值時(shí)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)在的值域;
(2)若關(guān)于的方程有解,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)是定義在上的奇函數(shù),并且在上是減函數(shù).是否存在實(shí)數(shù)使恒成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請說明理由.[來
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com