【題目】已知圓M:與軸相切.
(1)求的值;
(2)求圓M在軸上截得的弦長(zhǎng);
(3)若點(diǎn)是直線上的動(dòng)點(diǎn),過點(diǎn)作直線與圓M相切,為切點(diǎn),求四邊形面積的最小值.
【答案】(1) (2) (3)
【解析】試題分析:(1)先將圓的一般方程化成標(biāo)準(zhǔn)方程,利用直線和圓相切進(jìn)行求解;(2) 令,得到關(guān)于的一元二次方程進(jìn)行求解;(3)將四邊形的面積的最小值問題轉(zhuǎn)化為點(diǎn)到直線的的距離進(jìn)行求解.
試題解析:(1) ∵圓M:與軸相切
∴ ∴
(2) 令,則 ∴
∴
(3)
∵的最小值等于點(diǎn)到直線的距離,
∴ ∴
∴四邊形面積的最小值為.
【題型】解答題
【結(jié)束】
20
【題目】在平面直角坐標(biāo)系中,圓的方程為,且圓與軸交于, 兩點(diǎn),設(shè)直線的方程為.
(1)當(dāng)直線與圓相切時(shí),求直線的方程;
(2)已知直線與圓相交于, 兩點(diǎn).
(ⅰ)若,求實(shí)數(shù)的取值范圍;
(ⅱ)直線與直線相交于點(diǎn),直線,直線,直線的斜率分別為, , ,
是否存在常數(shù),使得恒成立?若存在,求出的值;若不存在,說明理由.
【答案】(1);(2);(3)見解析
【解析】試題分析:(1)由題意,圓心到直線的距離,由直線與圓相切得,由此能求出直線的方程;(2)(i)由題意得: , ,由此能求出實(shí)數(shù)的取值范圍;(ii) 與圓 聯(lián)立,得: ,由韋達(dá)定理求出的坐標(biāo),從而得到
,由此能證明存在常數(shù),使得恒成立.
試題解析:(1)解:由題意, ,
∴圓心到直線的距離,
∵直線與圓相切,∴,
∴,∴直線.
(2)解:由題意得: ,∴,
由(1)可知: ,∴,
∴.
(3)證明: ,與圓 聯(lián)立,得: ,
∴, ,∴,
同理可得: , ∵,
∴,即,
∵,∴, 設(shè),
∴,∴, ∴,即,
∴,∴,
∴存在常數(shù),使得恒成立.
【方法點(diǎn)晴】本題主要考查待定系數(shù)法求直線方程、直線與圓的位置關(guān)系以及解析幾何中的存在性問題,屬于難題.解決存在性問題,先假設(shè)存在,推證滿足條件的結(jié)論,若結(jié)論正確則存在,若結(jié)論不正確則不存在,注意:①當(dāng)條件和結(jié)論不唯一時(shí)要分類討論;②當(dāng)給出結(jié)論而要推導(dǎo)出存在的條件時(shí),先假設(shè)成立,再推出條件;③當(dāng)條件和結(jié)論都不知,按常規(guī)方法題很難時(shí)采取另外的途徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:經(jīng)過點(diǎn),離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過坐標(biāo)原點(diǎn)作直線交橢圓于、兩點(diǎn),過點(diǎn)作的平行線交橢圓于、兩點(diǎn).
①是否存在常數(shù),滿足?若存在,求出這個(gè)常數(shù);若不存在,請(qǐng)說明理由;
②若的面積為, 的面積為,且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱的側(cè)棱垂直于底面, ,點(diǎn)分別是和的中點(diǎn).
(1)證明:平面;
(2)設(shè),當(dāng)為何值時(shí),平面,試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的準(zhǔn)線與軸交于點(diǎn),過點(diǎn)作直線交拋物線于,兩點(diǎn).
(1)求直線的斜率的取值范圍;
(2)若線段的垂直平分線交軸于,求證:;
(3)若直線的斜率依次為,,,…,,…,線段的垂直平分線與軸的交點(diǎn)依次為,,,…,,…,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若存在正數(shù)x,y,使得,其中e為自然對(duì)數(shù)的底數(shù),則實(shí)數(shù)的取值范圍是_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(2,0),B(0,2),,O為坐標(biāo)原點(diǎn).
(1),求sin 2θ的值;
(2)若,且θ∈(-π,0),求與的夾角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分別求適合下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過點(diǎn)A (,-2),B(-2,1);
(2)與橢圓有相同焦點(diǎn)且經(jīng)過點(diǎn)M(,1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期是,其圖象向右平移個(gè)單位后得到的函數(shù)為奇函數(shù).有下列結(jié)論:
①函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱;②函數(shù)的圖象關(guān)于直線對(duì)稱;③函數(shù)在上是減函數(shù);④函數(shù)在上的值域?yàn)?/span>.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,AC與BD交于點(diǎn)O,PC⊥底面ABCD, 點(diǎn)E為側(cè)棱PB的中點(diǎn).
求證:(1) PD∥平面ACE;
(2) 平面PAC⊥平面PBD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com