2.若方程|2x-1|=a有兩解,求a的取值范圍.

分析 作函數(shù)y=|2x-1|的圖象,從而結(jié)合圖象討論方程的根的個數(shù)即可

解答 解:作函數(shù)y=|2x-1|的圖象如下,
結(jié)合圖象可知,
當a=0時,方程|2x-1|=a有唯一實數(shù)解,
當0<a<1時,方程|2x-1|=a有兩個實數(shù)解,
當a≥1時,方程|2x-1|=a有唯一實數(shù)解,
故若方程|2x-1|=a有兩解,則0<a<1.

點評 本題考查了函數(shù)的圖象與方程的根的關(guān)系應(yīng)用及數(shù)形結(jié)合方法的應(yīng)用,利用數(shù)形結(jié)合以及指數(shù)函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,AB是圓O的直徑,BC與圓O相切于B,∠ADC+∠DCO=180°
(Ⅰ)證明:∠BCO=∠DCO;
(Ⅱ)若⊙O半徑為R,求AD•OC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知三棱柱ABC-A1B1C1如圖所示,其中CA⊥平面ABB1A1,四邊形ABB1A1為菱形,∠AA1B1=60°,E為BB1的中點,F(xiàn)為CB1的中點.
(1)證明:平面AEF⊥平面CAA1C1;
(2)若CA=2,AA1=4,求B1到平面AEF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.極坐標系中曲線Γ的極坐標方程為ρ=$\frac{4cosθ}{{{{sin}^2}θ}}$,以極點為原點,極軸為x軸正半軸建立平面直角坐標系,單位長度不變,直線l1,l2均過點F(1,0),且l1⊥l2,直線l1的傾斜角為α.
(1)寫出曲線Γ的直角坐標方程;寫出l1,l2的參數(shù)方程;
(2)設(shè)直線l1,l2分別與曲線Γ交于點A,B和C,D,線段AB和CD的中點分別為M,N,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|x2-1|,g(x)=a|x|-1.
(Ⅰ)求不等式f(x)≤3的解集;
(Ⅱ)若f(x)≥g(x)對任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知圓C:x2+y2-2x-3=0,直線l:ax+y+1=0,那么它們的位置關(guān)系( 。
A.圓與直線相切B.圓與直線相交
C.圓與直線相離D.以上三種均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若集合A={1,2,3}和B及C={1,2,3,4,5},且集合B滿足A∩B=A和C∪B=C,則集合B的個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{a}$=($\sqrt{3}$sin2x,cos2x),$\overrightarrow$=(cos2x,-cos2x),
(1)若x∈($\frac{7π}{24}$,$\frac{5π}{12}$)時,$\overrightarrow{a}$•$\overrightarrow$+$\frac{1}{2}$=-$\frac{3}{5}$,求cos4x的值;
(2)cos2x≥$\frac{1}{2}$,x∈(0,π),若關(guān)于x的方程$\overrightarrow{a}$•$\overrightarrow$+$\frac{1}{2}$=m有且只有一個根,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)是定義在[1,+∞)上的函數(shù),且f(x)=$\left\{\begin{array}{l}1-|{2x-3}|,\;\;\;1≤x<2\\ \frac{1}{2}f({\frac{1}{2}x}),\;\;\;\;x≥2\;\end{array}$,則函數(shù)y=2xf(x)-3在區(qū)間(1,2016)上的零點個數(shù)為11.

查看答案和解析>>

同步練習(xí)冊答案