14.已知$\frac{sinα+cosα}{2sinα-cosα}=2$,求tanα

分析 由條件利用同角三角函數(shù)的基本關(guān)系,求得tanα的值.

解答 解:∵$\frac{sinα+cosα}{2sinα-cosα}=2$=$\frac{tanα+1}{2tanα-1}$,∴tanα=1.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過點(diǎn)(2,3)且與圓x2+y2=4相切的直線有幾條( 。
A.0條B.1條C.2 條D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=x2-1,g(x)=10(x+1),各項(xiàng)均為正數(shù)的數(shù)列{an}滿足a1=2,(an+1-an)•g(an)+f(an)=0,${b_n}=\frac{9}{10}(n+2)({a_n}-1)$.
(Ⅰ)求證:數(shù)列{an-1}是等比數(shù)列;
(Ⅱ)當(dāng)n取何值時(shí),bn取最大值,并求出最大值;
(Ⅲ)若$\frac{{t}^{m}}{_{m}}$<$\frac{{t}^{m+1}}{_{m+1}}$對(duì)任意m∈N*恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知正四棱錐P-ABCD的底面邊長為2,側(cè)棱長為$\sqrt{5}$,則該四棱錐的側(cè)面積與表面積的比為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.解不等式x2-5x+6>0的解集為{x|x<2或x>3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.復(fù)數(shù)$\frac{2-i}{3+4i}$等于$\frac{2}{25}$$-\frac{11}{25}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知x、y都是正實(shí)數(shù),那么“x≥2或y≥2”是“x2+y2≥8”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)y=x2-2ax+1在[-1,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義在R上的函數(shù)y=f(x),f(0)≠0,當(dāng)x>0時(shí),f(x)>1,且對(duì)任意的a、b∈R,有f(a+b)=f(a)•f(b).則下列結(jié)論成立的是①②(填序號(hào))
①f(0)=1;             
②對(duì)任意的x∈R,恒有f(x)>0;
③f(x)是R上的減函數(shù);
④若f(x)•f(2x-x2)>1,則x的取值范圍是[0,3].

查看答案和解析>>

同步練習(xí)冊(cè)答案