【題目】如圖為橢圓C:的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率,的面積為.若點在橢圓C上,則點稱為點M的一個橢圓,直線與橢圓交于A,B兩點,A,B兩點的橢圓分別為P,Q.

(1)求橢圓C的標準方程;

(2)問是否存在過左焦點的直線,使得以PQ為直徑的圓經(jīng)過坐標原點?若存在,求出該直線的方程;若不存在,請說明理由.

【答案】(1);(2)直線方程為.

【解析】

試題分析:本題主要考查橢圓的標準方程、直線的標準方程、圓的標準方程、韋達定理、向量垂直的充要條件等基礎(chǔ)知識,考查學生的分析問題解決問題的能力、計算能力.第一問,利用橢圓的離心率和三角形面積公式列出表達式,解方程組,得到基本量a和b的值,從而得到橢圓的方程;第二問,直線l過左焦點,所以討論直線的斜率是否存在,當斜率不存在時,可以直接寫出直線方程,令直線與橢圓聯(lián)立,得到交點坐標,驗證以PQ為直徑的圓不過坐標原點,當斜率存在時,直線與橢圓聯(lián)立,消參,利用韋達定理,證明,解出k的值.

(1)由題意,,即,,即 2

得:

橢圓的標準方程: 5

(2)當直線的斜率不存在時,直線的方程為

聯(lián)立解得,

不妨令,,所以對應的“橢點”坐標,

所以此時以為直徑的圓不過坐標原點. 7

當直線的斜率存在時,設(shè)直線的方程為

消去得,

設(shè),則這兩點的“橢點”坐標分別為

由根與系數(shù)關(guān)系得: 9

若使得以為直徑的圓過坐標原點,則

,

,即

代入,解得:

所以直線方程為 12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)= ,設(shè)f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N* , 且n≥2),令集合M={x|f2036(x)=x,x∈R},則集合M為(
A.空集
B.實數(shù)集
C.單元素集
D.二元素集

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將三顆骰子各擲一次,記事件A=“三個點數(shù)都不同”,B=“至少出現(xiàn)一個6點”,則條件概率P(A|B),P(B|A)分別是(
A.
B. ,
C.
D. ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱, 平面 , 的中點, 是等腰三角形 的中點, 上一點.

)若,證明 平面;

求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C的參數(shù)方程為 ,(t為參數(shù)),在以原點O為極點,x軸的非負半軸為極軸建立的極坐標系中,直線l的極坐標方程為 ,A,B兩點的極坐標分別為
(1)求圓C的普通方程和直線l的直角坐標方程;
(2)點P是圓C上任一點,求△PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在Rt△AOB中, ,斜邊AB=4,D是AB中點,現(xiàn)將Rt△AOB以直角邊AO為軸旋轉(zhuǎn)一周得到一個圓錐,點C為圓錐底面圓周上一點,且∠BOC=90°,
(1)求圓錐的側(cè)面積;
(2)求直線CD與平面BOC所成的角的大小;(用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線y2=4x的準線與x軸交于A點,焦點是F,P是位于x軸上方的拋物線上的任意一點,令m= ,當m取得最小值時,PA的斜率是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為辦好省運會,計劃招募各類志愿者1.2萬人.為做好宣傳工作,招募小組對15-40歲的人群隨機抽取了100人,回答省運會的有關(guān)知識,根據(jù)統(tǒng)計結(jié)果制作了如下的統(tǒng)計圖表1、表2

I)分別求出表2中的a、x的值;

II)若在第23、4組回答完全正確的人中,用分層抽樣的方法抽取6人,則各組應分別抽取多少人?

III)在(II)的前提下,招募小組決定在所抽取的6人中,隨機抽取2人頒發(fā)幸運獎,求獲獎的2人均來自第3組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時, f(x)=-x+1

(1)求f(0),f(2);

(2)求函數(shù)f(x)的解析式;

(3)若f(a-1)<3,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案