【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1.
(1)求證:AB1⊥平面A1BC1;
(2)若D在B1C1上,滿(mǎn)足B1D=2DC1,求AD與平面A1BC1所成的角的正弦值.
【答案】(1)見(jiàn)解析; (2).
【解析】
(1)先證明AB1⊥A1B,AB1⊥A1C1,進(jìn)而得證結(jié)論;
(2)以A1B1,A1C1,A1A為x,y,z軸如圖建立空間直角坐標(biāo)系,求解平面A1BC1的法向量為,利用線(xiàn)面角的向量公式,即得解.
(1)在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1,
根據(jù)已知條件易得AB1⊥A1B,
由A1C1⊥面ABB1A1,得AB1⊥A1C1,
A1B∩A1C1=A1,
故AB1⊥平面A1BC1;
(2)以A1B1,A1C1,A1A為x,y,z軸如圖建立空間直角坐標(biāo)系,
設(shè)AB=a,則A(0,0,a),B(a,0,a),,
所以,
設(shè)平面A1BC1的法向量為
,令
則,
可計(jì)算得到
所以AD與平面A1BC1所成的角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)、點(diǎn)及拋物線(xiàn).
(1)若直線(xiàn)過(guò)點(diǎn)及拋物線(xiàn)上一點(diǎn),當(dāng)最大時(shí)求直線(xiàn)的方程;
(2)軸上是否存在點(diǎn),使得過(guò)點(diǎn)的任一條直線(xiàn)與拋物線(xiàn)交于點(diǎn),且點(diǎn)到直線(xiàn)的距離相等?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若在上恒成立,求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下(提示:可以用第(2)問(wèn)的結(jié)論),任意的,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2:ρ2﹣4ρcosθ+3=0.
(1)求曲線(xiàn)C1的一般方程和曲線(xiàn)C2的直角坐標(biāo)方程;
(2)若點(diǎn)P在曲線(xiàn)C1上,點(diǎn)Q曲線(xiàn)C2上,求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年2月1日0:00時(shí),英國(guó)順利“脫歐”.在此之前,英國(guó)“脫歐”這件國(guó)際大事被社會(huì)各界廣泛關(guān)注,英國(guó)大選之后,曾預(yù)計(jì)將會(huì)在2020年1月31日完成“脫歐”,但是因?yàn)橹啊懊摎W”一直被延時(shí),所以很多人認(rèn)為并不能如期完成,某媒體隨機(jī)在人群中抽取了100人做調(diào)查,其中40歲以上的55人中有10人認(rèn)為不能完成,40歲以下的人中認(rèn)為能完成的占.
(1)完成列聯(lián)表,并回答能否有90%的把握認(rèn)為“預(yù)測(cè)國(guó)際大事的準(zhǔn)確率與年齡有關(guān)”?
能完成 | 不能完成 | 合計(jì) | |
40歲以上 | |||
40歲以下 | |||
合計(jì) |
(2)從上述100人中,采用按年齡分層抽樣的方法,抽取20人,從這20人中再選取40歲以下的2人做深度調(diào)査,則2人中恰有1人認(rèn)為英國(guó)能夠完成“脫歐”的概率為多少?
附表:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“共享單車(chē)”的出現(xiàn),為我們提供了一種新型的交通方式。某機(jī)構(gòu)為了調(diào)查人們對(duì)此種交通方式的滿(mǎn)意度,從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20個(gè)用戶(hù),得到了一個(gè)用戶(hù)滿(mǎn)意度評(píng)分的樣本,并繪制出莖葉圖如圖:
(1)根據(jù)莖葉圖,比較兩城市滿(mǎn)意度評(píng)分的平均值的大小及方差的大。ú灰笥(jì)算出具體值,給出結(jié)論即可);
(2)若得分不低于80分,則認(rèn)為該用戶(hù)對(duì)此種交通方式“認(rèn)可”,否則認(rèn)為該用戶(hù)對(duì)此種交通方式“不認(rèn)可”,請(qǐng)根據(jù)此樣本完成此2×2列聯(lián)表,并據(jù)此樣本分析是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車(chē)有關(guān);
A | B | 合計(jì) | |
認(rèn)可 | |||
不認(rèn)可 | |||
合計(jì) |
(3)在A,B城市對(duì)此種交通方式“認(rèn)可”的用戶(hù)中按照分層抽樣的方法抽取6人,若在此6人中推薦2人參加“單車(chē)維護(hù)”志愿活動(dòng),求A城市中至少有1人的概率。
參考數(shù)據(jù)如下:(下面臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,扇形AOB是一個(gè)觀(guān)光區(qū)的平面示意圖,其中圓心角∠AOB為,半徑OA為1 km.為了便于游客觀(guān)光休閑,擬在觀(guān)光區(qū)內(nèi)鋪設(shè)一條從入口A(yíng)到出口B的觀(guān)光道路,道路由弧AC、線(xiàn)段CD及線(xiàn)段DB組成,其中D在線(xiàn)段OB上,且CD∥AO.設(shè)∠AOC=θ.
(1)用θ表示CD的長(zhǎng)度,并寫(xiě)出θ的取值范圍;
(2)當(dāng)θ為何值時(shí),觀(guān)光道路最長(zhǎng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著醫(yī)院對(duì)看病掛號(hào)的改革,網(wǎng)上預(yù)約成為了當(dāng)前最熱門(mén)的就診方式,這解決了看病期間病人插隊(duì)以及醫(yī)生先治療熟悉病人等諸多問(wèn)題;某醫(yī)院研究人員對(duì)其所在地區(qū)年齡在10~60歲間的位市民對(duì)網(wǎng)上預(yù)約掛號(hào)的了解情況作出調(diào)查,并將被調(diào)查的人員的年齡情況繪制成頻率分布直方圖,如下所示.
(1)若被調(diào)查的人員年齡在20~30歲間的市民有300人,求被調(diào)查人員的年齡在40歲以上(含40歲)的市民人數(shù);
(2)若按分層抽樣的方法從年齡在以及內(nèi)的市民中隨機(jī)抽取10人,再?gòu)倪@10人中隨機(jī)抽取3人進(jìn)行調(diào)研,記隨機(jī)抽取的3人中,年齡在內(nèi)的人數(shù)為,求的分布列以及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天文學(xué)中為了衡量星星的明暗程度,古希臘天文學(xué)家喜帕恰斯(,又名依巴谷)在公元前二世紀(jì)首先提出了星等這個(gè)概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計(jì)在天體光度測(cè)量中的應(yīng)用,英國(guó)天文學(xué)家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來(lái)描述.兩顆星的星等與亮度滿(mǎn)足.其中星等為的星的亮度為.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的倍,則與最接近的是(當(dāng)較小時(shí), )
A.1.24B.1.25C.1.26D.1.27
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com