.(本題滿(mǎn)分14分)已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在X軸上,橢圓短半軸長(zhǎng)為1,動(dòng)點(diǎn)  在直線上。
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)求以線段OM為直徑且被直線截得的弦長(zhǎng)為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過(guò)點(diǎn)F作直線OM的垂線與以線段OM為直徑的圓交于點(diǎn)N,求證:線段ON的長(zhǎng)為定值,并求出這個(gè)定值。
解(1)又由點(diǎn)M在準(zhǔn)線上,得          ………2分
   從而                          
所以橢圓方程為                                 ……………4分
(2)以O(shè)M為直徑的圓的方程為
                                
其圓心為,半徑                                ……………6分
因?yàn)橐設(shè)M為直徑的圓被直線截得的弦長(zhǎng)為2
所以圓心到直線的距離            ……………8分
所以,解得
所求圓的方程為                          ……………10分
(3)方法一:設(shè)過(guò)點(diǎn)F作直線OM的垂線, 垂足為K,由平幾知:
直線OM:,直線FN:          ……12分

所以線段ON的長(zhǎng)為定值。
所以線段ON的長(zhǎng)為定值…………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
已知橢圓經(jīng)過(guò)點(diǎn),離心率為
(1)求橢圓的方程;
(2)設(shè)過(guò)定點(diǎn)M(0,2)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線的焦點(diǎn)恰好是橢圓的右焦點(diǎn),且兩條曲線的交點(diǎn)連線也過(guò)焦點(diǎn),則橢圓的離心率為             (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓C:(a〉b>0)的左焦點(diǎn)為,橢圓過(guò)點(diǎn)P(
(1)求橢圓C的方程;
(2)已知點(diǎn)D(l,0),直線l:與橢圓C交于A、B兩點(diǎn),以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,則的值為   ( ) 
     B           C  2           D  4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)橢圓C:長(zhǎng)軸為8離心率
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓C內(nèi)一點(diǎn)M(2,1)引一條弦,使弦被點(diǎn)M平分,
求這條弦所在的直線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓的離心率為,則__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

以橢圓的右焦點(diǎn)為圓心作一個(gè)圓過(guò)橢圓的中心O并交橢圓于M、N,若過(guò)橢圓左焦點(diǎn)的直線是圓的切線,則橢圓的右準(zhǔn)線與圓的位置關(guān)系是_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

P為橢圓上一點(diǎn),F(xiàn)1、F2是橢圓的左、右焦點(diǎn),若使△F1PF2為直角三角形的點(diǎn)P共有8個(gè),則橢圓離心率的取值范圍是            

查看答案和解析>>

同步練習(xí)冊(cè)答案