已知數(shù)列{an}的通項為an=
n
n2+58
,則數(shù)列{an}的最大項為( 。
A、第7項B、第8項
C、第7項或第8項D、不存在
考點:數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:an=
n
n2+58
=
1
n+
58
n
1
2
58
,而a7=
7
72+58
=
7
107
,a8=
8
82+58
=
4
61
,比較a7與a8即可得出.
解答: 解:∵an=
n
n2+58
=
1
n+
58
n
1
2
58
,而a7=
7
72+58
=
7
107
,a8=
8
82+58
=
4
61

而a7<a8,
∴數(shù)列{an}的最大項為a8
故選:B.
點評:本題考查了數(shù)列的單調(diào)性、基本不等式的性質(zhì),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x,y∈R,則“x•y>0”是“x>0且y>0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

雙曲線的實軸長與虛軸長之和等于其焦距的
2
倍,且一個頂點的坐標為(0,2),則雙曲線的標準方程為( 。
A、
x2
4
-
y2
4
=1
B、
y2
4
-
x2
4
=1
C、
y2
4
-
x2
8
=1
D、
x2
8
-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
AB
=(2,x-1),
CD
=(1,-y)(xy>0),且
AB
CD
,則
2
x
+
1
y
的最小值等于( 。
A、2B、4C、8D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

無窮數(shù)列{
1
3n
sin
2
}前n項和的極限為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)的反函數(shù)為y=f-1(x),如果函數(shù)y=f(x)的圖象過點(2,-2),那么函數(shù)y=f-1(-2x)+1的圖象一定過點
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x2-2x-8≤0的解集是( 。
A、{x|-2≤x≤4}
B、{x|x≤-2或x≥4}
C、{x|x≤-2}
D、{x|x≥4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)是定義在(-4,4)上的奇函數(shù),且在(-4,0]上為減函數(shù),則不等式f(x-2)+f(4+x)≤0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}中,a3=-6,a7=-12,則a5=( 。
A、±9
B、-9
C、±6
2
D、-6
2

查看答案和解析>>

同步練習冊答案