已知直線ax+by+c=0(abc≠0)與圓x2+y2=1相切,若△ABC的三邊長分別為|a|,|b|,|c|,則該三角形為______(判斷三角形的形狀).
由于圓心O(0,0)到直線ax+by+c=0(abc≠0)的距離正好等于半徑1,
故有
|0+0+c|
a2+b2
=1,化簡可得 a2+b2=c2,故此三角形為直角三角形,
故答案為:直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)M是圓x2+y2-2x-2y+1=0上的點(diǎn),則M到直線3x+4y-22=0的最長距離是______,最短距離是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線y=x+m和曲線y=
1-x2
有兩個(gè)不同的交點(diǎn),則m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線l:x+y-3=0及曲線C:(x-3)2+(y-2)2=2,則點(diǎn)M(2,1)( 。
A.在直線l上,但不在曲線C上
B.在直線l上,也在曲線C上
C.不在直線l上,也不在曲線C上
D.不在直線l上,但在曲線C上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線
3
x-y+2=0與圓x2+y2=2的交點(diǎn)個(gè)數(shù)有( 。﹤(gè).
A.0B.1C.2D.不能斷定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線l:2xsinα+2ycosα+1=0,圓C:x2+y2+2xsinα+2ycosα=0,l與C的位置關(guān)系是(  )
A.相交B.相切C.相離D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線kx+y-2=0(k∈R)與圓x2+y2+2x-2y+1=0的位置關(guān)系是( 。
A.相交B.相切C.相離D.與k值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線ax+by-1=0(a,b不全為0)與圓x2+y2=50有公共點(diǎn),且公共點(diǎn)的橫、縱坐標(biāo)均為整數(shù),那么這樣的直線有(  )
A.66條B.72條C.74條D.78條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓C的方程為,若以直線上任意一點(diǎn)為圓心,以l為半徑的圓與圓C沒有公共點(diǎn),則k的整數(shù)值是(  )
A.lB.0C.1 D.2

查看答案和解析>>

同步練習(xí)冊答案