精英家教網(wǎng)已知拋物線C:x2=2py(p>0)上一點(diǎn)A(m,4)到其焦點(diǎn)的距離為
174

(I)求p于m的值;
(Ⅱ)設(shè)拋物線C上一點(diǎn)p的橫坐標(biāo)為t(t>0),過(guò)p的直線交C于另一點(diǎn)Q,交x軸于M點(diǎn),過(guò)點(diǎn)Q作PQ的垂線交C于另一點(diǎn)N.若MN是C的切線,求t的最小值.
分析:(1)由拋物線方程得其準(zhǔn)線方程,進(jìn)而根據(jù)拋物線定義可知點(diǎn)A(m,4)到焦點(diǎn)的距離等于它到準(zhǔn)線的距離,求得p,則拋物線方程可得,把點(diǎn)A代入拋物線方程即可求得m.
(2)由題意知,過(guò)點(diǎn)P(t,t2)的直線PQ斜率存在且不為0,設(shè)其為k.則根據(jù)點(diǎn)斜式可知直線PQ的直線方程與拋物線方程聯(lián)立消去y,解得方程的根,根據(jù)QN⊥QP,進(jìn)而可知NQ的直線方程與拋物線方程聯(lián)立,解得方程的根.進(jìn)而可求得直線NM的斜率,依據(jù)MN是拋物線的切線,則可求得物線在點(diǎn)N處切線斜率進(jìn)而可建立等式.根據(jù)判別式大于等于0求得t的范圍.
解答:解:(Ⅰ)由拋物線方程得其準(zhǔn)線方程:
y=-
p
2
,根據(jù)拋物線定義
點(diǎn)A(m,4)到焦點(diǎn)的距離等于它到準(zhǔn)線的距離,
4+
p
2
=
17
4
,解得p=
1
2

精英家教網(wǎng)∴拋物線方程為:x2=y,將A(m,4)代入拋物線方程,解得m=±2
(Ⅱ)由題意知,過(guò)點(diǎn)P(t,t2)的直線PQ斜率存在且不為0,設(shè)其為k.
則lPQ:y-t2=k(x-t),
當(dāng)y=0,x=
-t2+kt
k
,
M(
-t2+kt
k
,0)

聯(lián)立方程
y-t2=k(x-t)
x2=y
,
整理得:x2-kx+t(k-t)=0
即:(x-t)[x-(k-t)]=0,
解得x=t,或x=k-t∴Q(k-t,(k-t)2),
而QN⊥QP,∴直線NQ斜率為-
1
k

lNQ:y-(k-t)2=-
1
k
[x-(k-t)]
,
聯(lián)立方程
y-(k-t)2=-
1
k
[x-(k-t)]
x2=y

整理得:x2+
1
k
x-
1
k
(k-t)-(k-t)2=0

即:kx2+x-(k-t)[k(k-t)+1]=0[kx+k(k-t)+1][x-(k-t)]=0,
解得:x=-
k(k-t)+1
k
,
或x=k-t∴N(-
k(k-t)+1
k
,
[k(k-t)+1]2
k2
)
,
KNM=
[k(k-t)+1]2
k2
-
k(k-t)+1
k
-
-t2+kt
k
=
(k2-kt+1)2
k(t2-k2-1)

而拋物線在點(diǎn)N處切線斜率:k=y′
|
 
x=
k(k-t)+1
k
=-
k(k-t)+1
k

∵M(jìn)N是拋物線的切線,
(k2-kt+1)2
k(t2-k2-1)
=
-2k(k-t)-2
k
,
整理得k2+tk+1-2t2=0
∵△=t2-4(1-2t2)≥0,
解得t≤-
2
3
(舍去),或t≥
2
3
,∴tmin=
2
3
點(diǎn)評(píng):本題主要考查了拋物線的簡(jiǎn)單性質(zhì).考查了學(xué)生對(duì)直線與拋物線的關(guān)系,直線的斜率等問(wèn)題綜合把握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2py(p>0),其焦點(diǎn)F到準(zhǔn)線的距離為
12

(1)試求拋物線C的方程;
(2)設(shè)拋物線C上一點(diǎn)P的橫坐標(biāo)為t(t>0),過(guò)P的直線交C于另一點(diǎn)Q,交x軸于M,過(guò)點(diǎn)Q作PQ的垂線交C于另一點(diǎn)N,若MN是C的切線,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=
12
y
和定點(diǎn)P(1,2),A、B為拋物線C上的兩個(gè)動(dòng)點(diǎn),且直線PA和PB的斜率為非零的互為相反數(shù).
(I)求證:直線AB的斜率是定值;
(II)若拋物線C在A、B兩點(diǎn)處的切線相交于點(diǎn)M,求M的軌跡方程;
(III)若A′與A關(guān)于y軸成軸對(duì)稱,求直線A′B與y軸交點(diǎn)P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2py,過(guò)點(diǎn)A(0,4)的直線l交拋物線C于M,N兩點(diǎn),且OM⊥ON.
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)N作y軸的平行線與直線y=-4相交于點(diǎn)Q,若△MNQ是等腰三角形,求直線MN的方程.K.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=ay(a>0),斜率為k的直線l經(jīng)過(guò)拋物線的焦點(diǎn)F,交拋物線于A,B兩點(diǎn),且拋物線上一點(diǎn)M(2
2
 , m) (m>1)
到點(diǎn)F的距離是3.
(Ⅰ)求a的值;
(Ⅱ)若k>0,且
AF
=3
FB
,求k的值.
(Ⅲ)過(guò)A,B兩點(diǎn)分別作拋物線的切線,這兩條切線的交點(diǎn)為點(diǎn)Q,求證:
AB
 • 
FQ
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2my(m>0)和直線l:y=x-m沒(méi)有公共點(diǎn)(其中m為常數(shù)).動(dòng)點(diǎn)P是直線l上的任意一點(diǎn),過(guò)P點(diǎn)引拋物線C的兩條切線,切點(diǎn)分別為M、N,且直線MN恒過(guò)點(diǎn)Q(1,1).
(1)求拋物線C的方程;
(2)已知O點(diǎn)為原點(diǎn),連接PQ交拋物線C于A、B兩點(diǎn),求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案