設(shè)數(shù)列{an}滿足an≠0,a1=1,an=(1-2n)anan-1+an-1(n≥2),數(shù)列{an}的前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:當(dāng)n≥2時(shí),
n
n+1
Sn<2
;
(3)試探究:當(dāng)n≥2時(shí),是否有
6n
(n+1)(2n+1)
Sn
5
3
?說(shuō)明理由.
分析:(1)由題可得an=(1-2n)anan-1+an-1,兩邊同時(shí)除以anan-1可得
1
an
-
1
an-1
=2n-1
,所以
1
an
=
1
a1
+(
1
a2
-
1
a1
)+(
1
a3
-
1
a2
)+…+(
1
an
-
1
an-1
)
進(jìn)而得到答案.
(2)根據(jù)數(shù)列的通項(xiàng)公式得特征可得:
1
n2
1
(n-1)n
=
1
n-1
-
1
n
,
1
n2
1
n(n+1)
=
1
n
-
1
n+1
,進(jìn)而通過(guò)放縮法證明原不等式.
(3)根據(jù)所證不等式的特征可得:
1
n2
=
4
4n2
4
(2n-1)(2n+1)
=2(
1
2n-1
-
1
2n+1
)
,利用放縮法可得Sn
5
3
;由(2)可得只需證明
n
n+1
6n
(n+1)(2n+1)
即可,
即證明2n+1>6成立即可,顯然經(jīng)過(guò)驗(yàn)證可得此不等式正確.
解答:解:(1)∵an≠0
∴anan-1≠0(n≥2)
an
anan-1
=
(1-2n)anan-1
anan-1
+
an-1
anan-1

1
an-1
=(1-2n)+
1
an
即有
1
an
-
1
an-1
=2n-1
,
1
an
=
1
a1
+(
1
a2
-
1
a1
)+(
1
a3
-
1
a2
)+…+(
1
an
-
1
an-1
)
=1+3+5+7+…+(2n-1)=
n(1+2n-1)
2
=n2
(n≥2)
1
a1
=1
也適合上式,
an=
1
n2

(2)證明:∵an=
1
n2

Sn=a1+a2+…+an=1+
1
22
+
1
32
+…+
1
n2

∵當(dāng)n≥2時(shí),
1
n2
1
(n-1)n
=
1
n-1
-
1
n

1+
1
22
+
1
32
+…+
1
n2
<1+[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n-1
-
1
n+1
)]
=2-
1
n+1
<2.
又∵
1
n2
1
n(n+1)
=
1
n
-
1
n+1

Sn>(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)
=1-
1
n+1
=
n
n+1

∴當(dāng)n≥2時(shí),
n
n+1
Sn<2

(3)∵
1
n2
=
4
4n2
4
(2n-1)(2n+1)
=2(
1
2n-1
-
1
2n+1
)

1+
1
22
+
1
32
+…+
1
n2
<1+2[(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)]

=
5
3
-
2
2n+1
5
3

當(dāng)n≥2時(shí),要Sn
6n
(n+1)(2n+1)
只需
n
n+1
6n
(n+1)(2n+1)

即需2n+1>6,顯然這在n≥3時(shí)成立
S2=1+
1
4
=
5
4
,當(dāng)n≥2時(shí)
6n
(n+1)(2n+1)
=
6×2
(2+1)(4+1)
=
4
5
顯然
5
4
4
5

即當(dāng)n≥2時(shí)Sn
6n
(n+1)(2n+1)
也成立
綜上所述:當(dāng)n≥2時(shí),有
6n
(n+1)(2n+1)
Sn
5
3
點(diǎn)評(píng):本題出現(xiàn)的問(wèn)題是求通項(xiàng)求和過(guò)程中的運(yùn)算不過(guò)關(guān),解決與數(shù)列有關(guān)的不等式問(wèn)題時(shí)一般利用的方法是放縮法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足a1=1,且對(duì)任意的n∈N*,點(diǎn)Pn(n,an)都有
.
PnPn+1
=(1,2)
,則數(shù)列{an}的通項(xiàng)公式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)若數(shù)列{bn}:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí).
則{cn}
是公差為8的準(zhǔn)等差數(shù)列.
(I)設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.求證:{an}為準(zhǔn)等差數(shù)列,并求其通項(xiàng)公式:
(Ⅱ)設(shè)(I)中的數(shù)列{an}的前n項(xiàng)和為Sn,試研究:是否存在實(shí)數(shù)a,使得數(shù)列Sn有連續(xù)的兩項(xiàng)都等于50.若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•日照一模)若數(shù)列{bn}:對(duì)于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如數(shù)列cn:若cn=
4n-1,當(dāng)n為奇數(shù)時(shí)
4n+9,當(dāng)n為偶數(shù)時(shí)
,則數(shù)列{cn}是公差為8的準(zhǔn)等差數(shù)列.設(shè)數(shù)列{an}滿足:a1=a,對(duì)于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準(zhǔn)等差數(shù)列;
(Ⅱ)求證:{an}的通項(xiàng)公式及前20項(xiàng)和S20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足a1=1,a2+a4=6,且對(duì)任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx滿足f′(
π
2
)=0
cn=an+
1
2an
,則數(shù)列{cn}的前n項(xiàng)和Sn為( 。
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足:a1=2,an+1=1-
1
an
,令An=a1a2an,則A2013
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案