【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點為極點,x軸非負半軸為極軸建立極坐標系.

1)求曲線C的極坐標方程;

2)在平面直角坐標系xOy中,A(﹣2,0),B0,﹣2),M是曲線C上任意一點,求ABM面積的最小值.

【答案】(1)ρ26ρcosθ8ρsinθ+210.(2)92

【解析】

(1)先將化簡成直角坐標方程,再利用化簡即可.

(2)為以為底,的距離為高可知要求面積的最小值即求的距離最大值.再設求解最值即可.

1)∵曲線C的參數(shù)方程為,(θ為參數(shù)),有.

上下平方相加得曲線C的直角坐標方程為,

化簡得

,代入得曲線C的直角坐標方程有:

2)設點到直線ABx+y+20的距離為d,

,

sin)=﹣1時,d有最小值,

所以△ABM面積的最小值S92

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設集合, 是集合的所有子集組成的集合.若集合滿足對任意的映射,總存在,使得成立,其中,表示集合的子集的補集,為給定的正整數(shù).試求所有滿足上述條件的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某群體的人均通勤時間,是指單日內該群體中成員從居住地到工作地的平均用時.某地上班族中的成員僅以自駕或公交方式通勤.分析顯示:當)的成員自駕時,自駕群體的人均通勤時間為(單位:分鐘),而公交群體的人均通勤時間不受影響,恒為分鐘,試根據(jù)上述分析結果回答下列問題:

(1)當在什么范圍內時,公交群體的人均通勤時間少于自駕群體的人均通勤時間?

(2)求該地上班族的人均通勤時間的表達式;討論的單調性,并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】首屆中國國際進口博覽會于2018年11月5日至10日在上海的國家會展中心舉辦.國家展、企業(yè)展、經貿論壇、高新產品匯集……首屆進博會高點紛呈.一個更加開放和自信的中國,正用實際行動為世界構筑共同發(fā)展平臺,展現(xiàn)推動全球貿易與合作的中國方案.

某跨國公司帶來了高端智能家居產品參展,供購商洽談采購,并決定大量投放中國市場.已知該產品年固定研發(fā)成本30萬美元,每生產一臺需另投入90美元.設該公司一年內生產該產品萬臺且全部售完,每萬臺的銷售收入為萬美元,

(1)寫出年利潤(萬美元)關于年產量(萬臺)的函數(shù)解析式;(利潤=銷售收入-成本)

(2)當年產量為多少萬臺時,該公司獲得的利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,分別為橢圓:的左右焦點,已知橢圓上的點到焦點,的距離之和為4.

(1)求橢圓的方程;

(2)過點作直線交橢圓,兩點,線段的中點為,連結并延長交橢圓于點(為坐標原點),若,,等比數(shù)列,求線段的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),且),,(其中的導函數(shù)).

(1)當時,求的極大值點;

(2)討論的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4,極坐標與參數(shù)方程

已知在平面直角坐標系中,為坐標原點,曲線為參數(shù)),在以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同單位長度的極坐標系中,直線的極坐標方程為

(1)求曲線的普通方程和直線的直角坐標方程;

(2)直線軸的交點,經過點的直線與曲線交于兩點,若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調遞減區(qū)間;

(2)當時,設函數(shù).若存在區(qū)間,使得函數(shù)上的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)求與橢圓有共同焦點且過點的雙曲線的標準方程;

(2)已知拋物線的焦點在軸上,拋物線上的點到焦點的距離等于5,求拋物線的標準方程和的值.

查看答案和解析>>

同步練習冊答案