定義在R上的奇函數(shù)f(x)滿足:x<0時,f(x)=(
1
2
x,則f(1)=
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:依題意,f(x)為R上的奇函數(shù),從而可求得f(1)=-f(-1)的值.
解答: 解:由x<0時,f(x)=(
1
2
x,
∴f(-1)=(
1
2
)-1
=2,
f(x)為R上的奇函數(shù)得f(1)=-f(-1)=-2,
故答案為:-2.
點評:本題考查函數(shù)的求值,著重考查函數(shù)奇偶性的性質(zhì)及應(yīng)用,求得b的值是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2012年歐洲杯足球賽將于6月份在波蘭和烏克蘭兩個國家舉行,東道主波蘭所在的A組共有四支球隊,四支球隊之間進(jìn)行單循環(huán)比賽,共進(jìn)行的比賽的場數(shù)為(  )
A、6B、12C、3D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+
π
6
)(ω>0),函數(shù)f(x)的圖象與x軸兩個相鄰交點的距離為π,則f(x)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,p為⊙O外一點,過P點作⊙O的兩條切線,切點分別為A,B,過PA的中點Q作割線交⊙O于C,D兩點,若QC=1,CD=4,則PB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
AB
2+
AB
BC
<0,則△ABC為(  )
A、銳角三角形
B、直角三角形
C、鈍角三角形
D、銳角或鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
34
25
71
,B=
51
37
85
,則B-A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若三個內(nèi)角A,B,C成等差數(shù)列且A<B<C,則cosAcosC的取值范圍是(  )
A、(-
1
2
1
4
]
B、[-
3
4
1
4
]
C、(-
1
2
1
4
D、(-
3
4
,
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+2
3
cos2x-
3
,函數(shù)g(x)=mcos(2x-
π
6
)-2m+3(m>0),若?x1∈[0,
π
4
],總?x2∈[0,
π
4
],使得g(x1)=f(x2)成立,則實數(shù)m的取值范圍為(  )
A、[1,2]
B、[1,
4
3
]
C、[
3
2
,2]
D、[
2
3
4
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≤1
y≤1
x+y-1≥0
表示的平面區(qū)域面積是( 。
A、
1
2
B、
1
4
C、1
D、2

查看答案和解析>>

同步練習(xí)冊答案