1.若集合M={x∈N|x2-8x+7<0},N={x|$\frac{x}{3}$∉N},則M∩N等于( 。
A.{3,6}B.{4,5}C.{2,4,5}D.{2,4,5,7}

分析 求解一元二次不等式化簡(jiǎn)M,再由交集運(yùn)算得答案.

解答 解:∵M(jìn)={x∈N|x2-8x+7<0}={x∈N|1<x<7}={2,3,4,5,6},N={x|$\frac{x}{3}$∉N},
∴M∩N={2,3,4,5,6}∩{x|$\frac{x}{3}$∉N}={2,4,5},
故選:C.

點(diǎn)評(píng) 本題考查交集及其運(yùn)算,考查了一元二次不等式的解法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知全集U={x∈N|1≤x≤10},A={1,2,3,5,8},B={1,3,5,7,9}.
(Ⅰ)求A∩B;               
(Ⅱ)求(∁UA)∩(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.集合A={$\frac{9}{10-x$∈N|x∈N}的真子集的個(gè)數(shù)是( 。
A.4B.7C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合A={x|x≥2},B={x|$\frac{x-1}{x-4}>0$},則A∩B=(  )
A.B.[2,4)C.[2,+∞)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在多面體ABCDEFG中,四邊形ABCD與ADEF是邊長(zhǎng)均為a的正方形,四邊形ABGH是直角梯形,AB⊥AF,且FA=2FG=4FH.
(1)求證:平面BCG⊥平面EHG;
(2)若a=4,求四棱錐G-BCEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=($\sqrt{3}$,1),則$\overrightarrow{a}$與$\overrightarrow$夾角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,若$sin({\frac{3}{2}B+\frac{π}{4}})=\frac{{\sqrt{2}}}{2}$,且a+c=2,則△ABC周長(zhǎng)的取值范圍是(  )
A.(2,3]B.[3,4)C.(4,5]D.[5,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知二次函數(shù)f(x)滿足條件f(0)=1和頂點(diǎn)坐標(biāo)(-2,-3)
(1)求f(x);
(2)指出f(x) 的圖象可以通過(guò) y=x2的圖象如何平移得到;
(3)求f(x)在區(qū)間[-1,1]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線y=3-x與兩坐標(biāo)軸圍成的區(qū)域?yàn)棣?SUB>1,不等式組$\left\{\begin{array}{l}y≤3-x\\ x≥0\\ y≥2x\end{array}\right.$所形成的區(qū)域?yàn)棣?SUB>2,現(xiàn)在區(qū)域Ω1中隨機(jī)放置一點(diǎn),則該點(diǎn)落在區(qū)域Ω2的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案